Solution regularity and smooth dependence for abstract equations and applications to hyperbolic PDEs
First we present a generalized implicit function theorem for abstract equations of the type F(λ,u)=0. We suppose that u0 is a solution for λ=0 and that F(λ,⋅) is smooth for all λ, but, mainly, we do not suppose that F(⋅,u) is smooth for all u. We state conditions such that for all λ≈0 there exists e...
Uloženo v:
| Vydáno v: | Journal of Differential Equations Ročník 259; číslo 11; s. 6287 - 6337 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
05.12.2015
|
| Témata: | |
| ISSN: | 0022-0396, 1090-2732 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | First we present a generalized implicit function theorem for abstract equations of the type F(λ,u)=0. We suppose that u0 is a solution for λ=0 and that F(λ,⋅) is smooth for all λ, but, mainly, we do not suppose that F(⋅,u) is smooth for all u. We state conditions such that for all λ≈0 there exists exactly one solution u≈u0, that u is smooth in a certain abstract sense, and that the data-to-solution map λ↦u is smooth. Then we apply this to time-periodic solutions of first-order hyperbolic systems∂tuj+aj(x,λ)∂xuj+bj(t,x,λ,u)=0 and second-order hyperbolic equations∂t2u−a(x,λ)2∂x2u+b(t,x,λ,u,∂tu,∂xu)=0. Here we have to prevent small divisors from coming up. Moreover, we need smooth dependence of bj and b on t to get smooth dependence of the solution on λ. This is completely different to the case of parabolic PDEs. |
|---|---|
| ISSN: | 0022-0396 1090-2732 |
| DOI: | 10.1016/j.jde.2015.07.029 |