A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations

This paper examines the numerical solutions of the neutral stochastic functional differential equation. This study establishes the discrete stochastic Razumikhin-type theorem to investigate the exponential stability in the mean square sense of the Euler–Maruyama numerical solution to this equation....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 10; číslo 6; s. 866
Hlavní autori: Wang, Qi, Chen, Huabin, Yuan, Chenggui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2022
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper examines the numerical solutions of the neutral stochastic functional differential equation. This study establishes the discrete stochastic Razumikhin-type theorem to investigate the exponential stability in the mean square sense of the Euler–Maruyama numerical solution to this equation. In addition, the Borel–Cantelli lemma and the stochastic analysis theory are incorporated to discuss the almost sure exponential stability for this numerical solution of such equations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060866