A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations

This paper examines the numerical solutions of the neutral stochastic functional differential equation. This study establishes the discrete stochastic Razumikhin-type theorem to investigate the exponential stability in the mean square sense of the Euler–Maruyama numerical solution to this equation....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 6; s. 866
Hlavní autoři: Wang, Qi, Chen, Huabin, Yuan, Chenggui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.03.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper examines the numerical solutions of the neutral stochastic functional differential equation. This study establishes the discrete stochastic Razumikhin-type theorem to investigate the exponential stability in the mean square sense of the Euler–Maruyama numerical solution to this equation. In addition, the Borel–Cantelli lemma and the stochastic analysis theory are incorporated to discuss the almost sure exponential stability for this numerical solution of such equations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060866