Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming

Integrating photovoltaic (PV) power into large-capacity hydropower plants is considered as an efficient and promising approach for large-scale PV power accommodation. To improve the guidelines for the optimal operation of large-scale hydro-PV hybrid systems, this paper proposes a practical coordinat...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 222; p. 119996
Main Authors: Yuan, Wenlin, Wang, Xinqi, Su, Chengguo, Cheng, Chuntian, Liu, Zhe, Wu, Zening
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.05.2021
Elsevier BV
Subjects:
ISSN:0360-5442, 1873-6785
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Integrating photovoltaic (PV) power into large-capacity hydropower plants is considered as an efficient and promising approach for large-scale PV power accommodation. To improve the guidelines for the optimal operation of large-scale hydro-PV hybrid systems, this paper proposes a practical coordination mode of a PV plant and a large-capacity hydropower plant based on the negotiation mechanism between the power generation company and the power grid. A chance-constrained programming (CCP) based stochastic optimization model is then presented to determine the short-term joint operation of a hydro-PV system, aiming at promoting renewable energy consumption. To improve the solution efficiency, several linearization approaches are proposed to convert the original model into a scenario-based mixed integer linear programming (MILP) problem. The real-world case studies demonstrate that the joint operation of the hydro-PV hybrid system can promote the consumption of renewable energy while making the actual total power output track the schedule submitted to the power grid. Moreover, the confidence level at which the power balance constraints can be met exceeds 90% in all weather conditions, far above the confidence level of less than 50% for the deterministic model, proving the stochastic model would be a better choice for the joint operation of a hydro-PV system. •A practical coordination mode of large-capacity hydro-PV system is proposed.•A CCP based MILP model for the daily operation of hydro-PV systems is presented.•The uncertainty of the PV power and unit operation constraints are considered.•System operation can promote the consumption of renewable energy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2021.119996