An Optimally-Competitive Algorithm for Maximum Online Perfect Bipartite Matching with i.i.d. Arrivals
We present an optimally-competitive algorithm for the problem of maximum online perfect bipartite matching with i.i.d. arrivals. In this problem, we are given a known set of workers, a distribution over job types, and non-negative utility weights for each pair of worker and job types. At each time s...
Uloženo v:
| Vydáno v: | Theory of computing systems Ročník 64; číslo 4; s. 645 - 661 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-4350, 1433-0490 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an optimally-competitive algorithm for the problem of maximum online perfect bipartite matching with i.i.d. arrivals. In this problem, we are given a known set of workers, a distribution over job types, and non-negative utility weights for each pair of worker and job types. At each time step, a job is drawn i.i.d. from the distribution over job types. Upon arrival, the job must be irrevocably assigned to a worker and cannot be dropped. The goal is to maximize the expected sum of utilities after all jobs are assigned. We introduce
Dispatch
, a 0.5-competitive, randomized algorithm. We also prove that 0.5-competitive is the best possible. When a job arrives,
Dispatch
first selects a “preferred worker” and assigns the job to this worker if it is available. The preferred worker is determined based on an optimal solution to a fractional transportation problem. If the preferred worker is not available,
Dispatch
randomly selects a worker from the available workers. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-4350 1433-0490 |
| DOI: | 10.1007/s00224-019-09947-7 |