Model-Validation and Implementation of a Path-Following Algorithm in an Autonomous Underwater Vehicle
This article studies the design, modeling, and implementation of a path-following algorithm as a guidance, navigation, and control (GNC) architecture for an autonomous underwater vehicle (AUV). First, a mathematical model is developed based on nonlinear equations of motion and parameter estimation t...
Saved in:
| Published in: | Applied sciences Vol. 11; no. 24; p. 11891 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2021
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article studies the design, modeling, and implementation of a path-following algorithm as a guidance, navigation, and control (GNC) architecture for an autonomous underwater vehicle (AUV). First, a mathematical model is developed based on nonlinear equations of motion and parameter estimation techniques, including the model validation based on field test data. Then, the guidance system incorporates a line-of-sight (LOS) algorithm with a combination of position PID controllers. The GNC architecture includes a modular and multi-layer approach with an LOS-based, path-following algorithm in the AUV platform. Furthermore, the navigation used in the path-following algorithm is developed based on a predefined coverage area. Finally, this study addresses simulation and field test control scenarios to verify the developed GNC architecture. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app112411891 |