An advanced compiler framework for non-cache-coherent multiprocessors

The Cray T3D and T3E are non-cache-coherent (NCC) computers with a NUMA structure. They have been shown to exhibit a very stable and scalable performance for a variety of application programs. Considerable evidence suggests that they are more stable and scalable than many other shared-memory multipr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 13; číslo 3; s. 241 - 259
Hlavní autoři: Yunheung Paek, Navarro, A., Zapata, E., Hoeflinger, J., Padua, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Cray T3D and T3E are non-cache-coherent (NCC) computers with a NUMA structure. They have been shown to exhibit a very stable and scalable performance for a variety of application programs. Considerable evidence suggests that they are more stable and scalable than many other shared-memory multiprocessors. However, the principal drawback of these machines is a lack of programmability, caused by the absence of the global cache coherence that is necessary to provide a convenient shared view of memory in hardware. This forces the programmer to keep careful track of where each piece of data is stored, a complication that is unnecessary when a pure shared-memory view is presented to the user. We believe that a remedy for this problem is advanced compiler technology. In this paper, we present our experience with a compiler framework for automatic parallelization and communication generation that has the potential to reduce the time-consuming hand-tuning that would otherwise be necessary to achieve good performance with this type of machine. From our experiments, we learned that our compiler performs well for a variety of applications on the T3D and T3E and we found a few sophisticated techniques that could improve performance even more once they are fully implemented in the compiler.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1045-9219
1558-2183
DOI:10.1109/71.993205