A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning
In the event of a disaster, the road network is often compromised in terms of its capacity and usability conditions. This is a challenge for humanitarian operations in the context of delivering critical medical supplies. To optimise vehicle routing for such a problem, a Multi-Depot Dynamic Vehicle-R...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 10; číslo 15; s. 2699 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2022
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the event of a disaster, the road network is often compromised in terms of its capacity and usability conditions. This is a challenge for humanitarian operations in the context of delivering critical medical supplies. To optimise vehicle routing for such a problem, a Multi-Depot Dynamic Vehicle-Routing Problem with Stochastic Road Capacity (MDDVRPSRC) is formulated as a Markov Decision Processes (MDP) model. An Approximate Dynamic Programming (ADP) solution method is adopted where the Post-Decision State Rollout Algorithm (PDS-RA) is applied as the lookahead approach. To perform the rollout effectively for the problem, the PDS-RA is executed for all vehicles assigned for the problem. Then, at the end, a decision is made by the agent. Five types of constructive base heuristics are proposed for the PDS-RA. First, the Teach Base Insertion Heuristic (TBIH-1) is proposed to study the partial random construction approach for the non-obvious decision. The heuristic is extended by proposing TBIH-2 and TBIH-3 to show how Sequential Insertion Heuristic (SIH) (I1) as well as Clarke and Wright (CW) could be executed, respectively, in a dynamic setting as a modification to the TBIH-1. Additionally, another two heuristics: TBIH-4 and TBIH-5 (TBIH-1 with the addition of Dynamic Lookahead SIH (DLASIH) and Dynamic Lookahead CW (DLACW) respectively) are proposed to improve the on-the-go constructed decision rule (dynamic policy on the go) in the lookahead simulations. The results obtained are compared with the matheuristic approach from previous work based on PDS-RA. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math10152699 |