Clustering multivariate functional data using unsupervised binary trees
•An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of clusters is determined in a data-driven way.•New data are easily classified. A model-based clustering algorithm is proposed for a general clas...
Saved in:
| Published in: | Computational statistics & data analysis Vol. 168; p. 107376 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2022
Elsevier |
| Subjects: | |
| ISSN: | 0167-9473, 1872-7352 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of clusters is determined in a data-driven way.•New data are easily classified.
A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with errors at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout. |
|---|---|
| AbstractList | •An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of clusters is determined in a data-driven way.•New data are easily classified.
A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with errors at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout. We propose a model-based clustering algorithm for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with error at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout. A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with errors at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout. |
| ArticleNumber | 107376 |
| Author | Golovkine, Steven Patilea, Valentin Klutchnikoff, Nicolas |
| Author_xml | – sequence: 1 givenname: Steven orcidid: 0000-0002-5994-2671 surname: Golovkine fullname: Golovkine, Steven email: steven.golovkine@ensai.fr organization: Groupe Renault & Ensai, CREST - UMR 9194, Rennes, France – sequence: 2 givenname: Nicolas surname: Klutchnikoff fullname: Klutchnikoff, Nicolas email: nicolas.klutchnikoff@univ-rennes2.fr organization: Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France – sequence: 3 givenname: Valentin surname: Patilea fullname: Patilea, Valentin email: valentin.patilea@ensai.fr organization: Ensai, CREST - UMR 9194, Rennes, France |
| BackLink | https://hal.science/hal-03391643$$DView record in HAL |
| BookMark | eNp9kM9LwzAUgIMoOKf_gKce9dCZH22SgpcxdBMGXvQc0uRVM7p0JunA_96W6sXDToHH9z1evit07jsPCN0SvCCY8IfdwkSrFxRTMgwEE_wMzYgUNBespOdoNkAirwrBLtFVjDuMMS2EnKH1qu1jguD8R7bv2-SOOjidIGt6b5LrvG4zq5PO-jgivY_9AcLRRbBZ7bwO31kKAPEaXTS6jXDz-87R-_PT22qTb1_XL6vlNjeMi5Rrw42tmrqQrLaWV6KoSdnUdVNwbWTRUFlaWgBhhlUlqRkQY6k0kuqqlARTNkf3095P3apDcPvhAtVppzbLrRpnmLGK8IIdycDeTewhdF89xKT2LhpoW-2h66OinHFeUjzQcyQn1IQuxgCNMi7p8f8paNcqgtXYWe3U2FmNndXUeVDpP_XvrJPS4yTB0OroIKhoHHgD1gUwSdnOndJ_ADJTmQ0 |
| CitedBy_id | crossref_primary_10_1007_s00180_024_01591_1 crossref_primary_10_1145_3581789 crossref_primary_10_1016_j_jspi_2023_106133 crossref_primary_10_1007_s00477_024_02700_8 crossref_primary_10_1093_jrsssc_qlad017 crossref_primary_10_1002_cjs_11838 crossref_primary_10_1007_s41060_023_00410_y crossref_primary_10_1007_s11222_023_10324_1 crossref_primary_10_1109_TII_2022_3168011 |
| Cites_doi | 10.1007/s00180-020-00958-4 10.1146/annurev-statistics-041715-033624 10.1080/01621459.2016.1273115 10.1016/j.neucom.2012.11.042 10.1198/016214504000001745 10.1016/j.csda.2018.10.009 10.1007/s11634-013-0158-y 10.1007/s00180-018-00864-w 10.1007/s00357-010-9054-8 10.1214/15-AOAS861 10.1111/biom.12546 10.1017/9781108644181 10.1111/j.2517-6161.1977.tb01600.x 10.1155/S1110865704407100 10.1111/insr.12362 10.1007/s00180-006-0013-0 10.1111/j.1467-9868.2011.01003.x 10.1007/978-1-4614-3655-3 10.1080/01621459.2013.824893 10.1214/15-STS524 10.1007/s11634-011-0095-6 10.1007/s00357-003-0007-3 10.1111/rssb.12310 10.1007/s11634-013-0129-3 10.1214/aos/1176344136 10.1214/13-AOS1158 10.1007/BF01908075 10.1214/09-AOS741 10.1016/j.csda.2012.12.004 10.1111/j.1467-9876.2012.01062.x |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
| DOI | 10.1016/j.csda.2021.107376 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Statistics |
| EISSN | 1872-7352 |
| ExternalDocumentID | oai:HAL:hal-03391643v1 10_1016_j_csda_2021_107376 S0167947321002103 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c367t-ac6cd9fb483bdd6974b15fbbf46ac84f285d24e13c3951b3e1cd28c82a9581023 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721109600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-9473 |
| IngestDate | Tue Oct 14 20:01:27 EDT 2025 Sun Sep 28 11:58:48 EDT 2025 Sat Nov 29 07:26:21 EST 2025 Tue Nov 18 21:56:35 EST 2025 Fri Feb 23 02:41:34 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gaussian mixtures Model-based clustering Multivariate functional principal components Multivariate Functional Principal Components |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-ac6cd9fb483bdd6974b15fbbf46ac84f285d24e13c3951b3e1cd28c82a9581023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5994-2671 0000-0001-9349-0771 |
| OpenAccessLink | https://hal.science/hal-03391643 |
| PQID | 2636652064 |
| PQPubID | 24069 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03391643v1 proquest_miscellaneous_2636652064 crossref_citationtrail_10_1016_j_csda_2021_107376 crossref_primary_10_1016_j_csda_2021_107376 elsevier_sciencedirect_doi_10_1016_j_csda_2021_107376 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 20220401 2022-04 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational statistics & data analysis |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Kayano, Dozono, Konishi (br0160) 2010; 27 Jacques, Preda (br0170) 2014; 71 Allen (br0250) 2013 Bouveyron, Côme, Jacques (br0130) 2015; 9 Happ, Greven (br0260) 2018; 113 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (br0410) 2011; 12 Tokushige, Yadohisa, Inada (br0140) 2007; 22 Schmutz, Jacques, Bouveyron (br0360) 2019 Marron, Ramsay, Sangalli, Srivastava (br0280) 2015; 30 Pelleg, Moore (br0220) 2000 Kokoszka, Oja, Park, Sangalli (br0040) 2017; 1 Ferraty, Kokoszka, Wang, Wu (br0050) 2019; 131 Horvàth, Kokoszka (br0020) 2012 Park, Ahn (br0190) 2017; 73 Dempster, Laird, Rubin (br0330) 1977; 39 Golovkine, Klutchnikoff, Patilea (br0310) 2020 Cheng, Wang, Fu (br0230) 2004; 2004 Wang, Chiou, Müller (br0030) 2016; 3 Delaigle, Hall (br0270) 2010; 38 Hubert, Arabie (br0390) 1985; 2 Rasmussen, Williams (br0420) 2006 Jacques, Preda (br0100) 2014; 8 Ieva, Paganoni, Pigoli, Vitelli (br0150) 2013; 62 Wang, Wong, Zhang (br0450) 0 2020 Fraiman, Ghattas, Svarc (br0210) 2013; 7 Hu, Yao (br0300) 2020 Staerman, Mozharovskyi, Clémençon, d’Alché Buc (br0240) 2019 Schwarz (br0340) 1978; 6 Jacques, Preda (br0370) 2013; 112 Delaigle, Hall (br0070) 2013; 108 Zambom, Collazos, Dias (br0400) 2019 Ramsay, Silverman (br0010) 2005 Yao, Müller, Wang (br0320) 2005; 100 Traore, Cristini, Favretto-Cristini, Pantera, Vieu, Viguier-Pla (br0200) 2019; 34 Delaigle, Hall (br0060) 2012; 74 Carroll, Delaigle, Hall (br0090) 2013; 41 Bouveyron, Celeux, Murphy, Raftery (br0110) 2019 Górecki, Horvàth, Kokoszka (br0440) 2020; 88 Reed, Simon (br0290) 1980 Schmutz, Jacques, Bouveyron, Cheze, Martin (br0180) 2020 Bouveyron, Jacques (br0350) 2011; 5 Delaigle, Hall, Pham (br0080) 2019; 81 Krajewski, Moers, Bock, Vater, Eckstein (br0430) 2020 Soueidatt, Preda, Jacques, Kubicki (br0380) 2014 Tarpey, Kinateder (br0120) 2003; 20 Reed (10.1016/j.csda.2021.107376_br0290) 1980 Cheng (10.1016/j.csda.2021.107376_br0230) 2004; 2004 Happ (10.1016/j.csda.2021.107376_br0260) 2018; 113 Hubert (10.1016/j.csda.2021.107376_br0390) 1985; 2 Traore (10.1016/j.csda.2021.107376_br0200) 2019; 34 Carroll (10.1016/j.csda.2021.107376_br0090) 2013; 41 Staerman (10.1016/j.csda.2021.107376_br0240) 2019 Kayano (10.1016/j.csda.2021.107376_br0160) 2010; 27 Marron (10.1016/j.csda.2021.107376_br0280) 2015; 30 Pedregosa (10.1016/j.csda.2021.107376_br0410) 2011; 12 Tarpey (10.1016/j.csda.2021.107376_br0120) 2003; 20 Bouveyron (10.1016/j.csda.2021.107376_br0350) 2011; 5 Dempster (10.1016/j.csda.2021.107376_br0330) 1977; 39 Allen (10.1016/j.csda.2021.107376_br0250) 2013 Kokoszka (10.1016/j.csda.2021.107376_br0040) 2017; 1 Yao (10.1016/j.csda.2021.107376_br0320) 2005; 100 Delaigle (10.1016/j.csda.2021.107376_br0080) 2019; 81 Schmutz (10.1016/j.csda.2021.107376_br0180) 2020 Tokushige (10.1016/j.csda.2021.107376_br0140) 2007; 22 Górecki (10.1016/j.csda.2021.107376_br0440) 2020; 88 Jacques (10.1016/j.csda.2021.107376_br0370) 2013; 112 Wang (10.1016/j.csda.2021.107376_br0030) 2016; 3 Zambom (10.1016/j.csda.2021.107376_br0400) Park (10.1016/j.csda.2021.107376_br0190) 2017; 73 Bouveyron (10.1016/j.csda.2021.107376_br0110) 2019 Wang (10.1016/j.csda.2021.107376_br0450) 2020 Ieva (10.1016/j.csda.2021.107376_br0150) 2013; 62 Delaigle (10.1016/j.csda.2021.107376_br0270) 2010; 38 Krajewski (10.1016/j.csda.2021.107376_br0430) 2020 Schmutz (10.1016/j.csda.2021.107376_br0360) Soueidatt (10.1016/j.csda.2021.107376_br0380) Delaigle (10.1016/j.csda.2021.107376_br0060) 2012; 74 Jacques (10.1016/j.csda.2021.107376_br0170) 2014; 71 Golovkine (10.1016/j.csda.2021.107376_br0310) Ferraty (10.1016/j.csda.2021.107376_br0050) 2019; 131 Ramsay (10.1016/j.csda.2021.107376_br0010) 2005 Hu (10.1016/j.csda.2021.107376_br0300) Jacques (10.1016/j.csda.2021.107376_br0100) 2014; 8 Delaigle (10.1016/j.csda.2021.107376_br0070) 2013; 108 Rasmussen (10.1016/j.csda.2021.107376_br0420) 2006 Bouveyron (10.1016/j.csda.2021.107376_br0130) 2015; 9 Fraiman (10.1016/j.csda.2021.107376_br0210) 2013; 7 Schwarz (10.1016/j.csda.2021.107376_br0340) 1978; 6 Horvàth (10.1016/j.csda.2021.107376_br0020) 2012 Pelleg (10.1016/j.csda.2021.107376_br0220) 2000 |
| References_xml | – volume: 81 start-page: 271 year: 2019 end-page: 304 ident: br0080 article-title: Clustering functional data into groups by using projections publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 100 start-page: 577 year: 2005 end-page: 590 ident: br0320 article-title: Functional data analysis for sparse longitudinal data publication-title: J. Am. Stat. Assoc. – volume: 2004 start-page: 2626 year: 2004 end-page: 2639 ident: br0230 article-title: A model-selection-based self-splitting Gaussian mixture learning with application to speaker identification publication-title: EURASIP J. Adv. Signal Process. – year: 2020 ident: br0310 article-title: Learning the smoothness of noisy curves with application to online curve estimation – year: 2005 ident: br0010 article-title: Functional Data Analysis publication-title: Springer Series in Statistics – year: 2019 ident: br0110 article-title: Model-Based Clustering and Classification for Data Science: With Applications in R publication-title: Cambridge Series in Statistical and Probabilistic Mathematics – start-page: 1 year: 2020 end-page: 6 ident: br0430 article-title: The round dataset: a drone dataset of road user trajectories at roundabouts in Germany publication-title: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: br0410 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 112 start-page: 164 year: 2013 end-page: 171 ident: br0370 article-title: Funclust: a curves clustering method using functional random variables density approximation publication-title: Neurocomputing – volume: 108 start-page: 1269 year: 2013 end-page: 1283 ident: br0070 article-title: Classification using censored functional data publication-title: J. Am. Stat. Assoc. – volume: 27 start-page: 211 year: 2010 end-page: 230 ident: br0160 article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application publication-title: J. Classif. – volume: 22 start-page: 1 year: 2007 end-page: 16 ident: br0140 article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data publication-title: Comput. Stat. – volume: 9 start-page: 1726 year: 2015 end-page: 1760 ident: br0130 article-title: The discriminative functional mixture model for a comparative analysis of bike sharing systems publication-title: Ann. Appl. Stat. – volume: 74 start-page: 267 year: 2012 end-page: 286 ident: br0060 article-title: Achieving near perfect classification for functional data publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. – volume: 20 year: 2003 ident: br0120 article-title: Clustering functional data publication-title: J. Classif. – volume: 30 start-page: 468 year: 2015 end-page: 484 ident: br0280 article-title: Functional data analysis of amplitude and phase variation publication-title: Stat. Sci. – year: 2006 ident: br0420 article-title: Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning – volume: 71 start-page: 92 year: 2014 end-page: 106 ident: br0170 article-title: Model-based clustering for multivariate functional data publication-title: Comput. Stat. Data Anal. – volume: 3 start-page: 257 year: 2016 end-page: 295 ident: br0030 article-title: Functional data analysis publication-title: Annu. Rev. Stat. Appl. – volume: 8 start-page: 24 year: 2014 ident: br0100 article-title: Functional data clustering: a survey publication-title: Adv. Data Anal. Classif. – start-page: 727 year: 2000 end-page: 734 ident: br0220 article-title: X-means: extending K-means with efficient estimation of the number of clusters publication-title: Proceedings of the 17th International Conf. on Machine Learning – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: br0390 article-title: Comparing partitions publication-title: J. Classif. – volume: 7 year: 2013 ident: br0210 article-title: Interpretable clustering using unsupervised binary trees publication-title: Adv. Data Anal. Classif. – volume: 1 start-page: 99 year: 2017 end-page: 100 ident: br0040 publication-title: Econom. Stat. – volume: 34 start-page: 631 year: 2019 end-page: 652 ident: br0200 article-title: Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches publication-title: Comput. Stat. – year: 2019 ident: br0360 article-title: FunHDDC: univariate and multivariate model-based clustering in group-specific functional subspaces – volume: 41 start-page: 2739 year: 2013 end-page: 2767 ident: br0090 article-title: Unexpected properties of bandwidth choice when smoothing discrete data for constructing a functional data classifier publication-title: Ann. Stat. – year: 2014 ident: br0380 article-title: Funclustering: a package for functional data clustering – start-page: 332 year: 2019 end-page: 347 ident: br0240 article-title: Functional isolation forest publication-title: Asian Conference on Machine Learning – year: 2012 ident: br0020 article-title: Inference for Functional Data with Applications publication-title: Springer Series in Statistics – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: br0340 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 131 start-page: 10 year: 2019 end-page: 11 ident: br0050 article-title: Editorial for the special issue on high-dimensional and functional data analysis publication-title: Comput. Stat. Data Anal. – year: 2020 ident: br0180 article-title: Clustering multivariate functional data in group-specific functional subspaces publication-title: Comput. Stat. – start-page: 1 year: 0 2020 end-page: 14 ident: br0450 article-title: Low-rank covariance function estimation for multidimensional functional data publication-title: J. Am. Stat. Assoc. – volume: 5 start-page: 281 year: 2011 end-page: 300 ident: br0350 article-title: Model-based clustering of time series in group-specific functional subspaces publication-title: Adv. Data Anal. Classif. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: br0330 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc., Ser. B, Methodol. – volume: 73 start-page: 324 year: 2017 end-page: 333 ident: br0190 article-title: Clustering multivariate functional data with phase variation publication-title: Biometrics – volume: 113 start-page: 649 year: 2018 end-page: 659 ident: br0260 article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains publication-title: J. Am. Stat. Assoc. – volume: 62 start-page: 401 year: 2013 end-page: 418 ident: br0150 article-title: Multivariate functional clustering for the morphological analysis of electrocardiograph curves publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat. – year: 1980 ident: br0290 article-title: Methods of Modern Mathematical Physics: Functional Analysis – year: 2019 ident: br0400 article-title: Selection of the number of clusters in functional data analysis – start-page: 220 year: 2013 end-page: 223 ident: br0250 article-title: Multi-way functional principal components analysis publication-title: 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing – volume: 88 start-page: 677 year: 2020 end-page: 697 ident: br0440 article-title: Tests of normality of functional data publication-title: Int. Stat. Rev. – volume: 38 start-page: 1171 year: 2010 end-page: 1193 ident: br0270 article-title: Defining probability density for a distribution of random functions publication-title: Ann. Stat. – year: 2020 ident: br0300 article-title: Sparse functional principal component analysis in high dimensions – year: 2020 ident: 10.1016/j.csda.2021.107376_br0180 article-title: Clustering multivariate functional data in group-specific functional subspaces publication-title: Comput. Stat. doi: 10.1007/s00180-020-00958-4 – volume: 3 start-page: 257 year: 2016 ident: 10.1016/j.csda.2021.107376_br0030 article-title: Functional data analysis publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-041715-033624 – volume: 113 start-page: 649 year: 2018 ident: 10.1016/j.csda.2021.107376_br0260 article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1273115 – ident: 10.1016/j.csda.2021.107376_br0380 – volume: 112 start-page: 164 year: 2013 ident: 10.1016/j.csda.2021.107376_br0370 article-title: Funclust: a curves clustering method using functional random variables density approximation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.042 – volume: 100 start-page: 577 year: 2005 ident: 10.1016/j.csda.2021.107376_br0320 article-title: Functional data analysis for sparse longitudinal data publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000001745 – volume: 131 start-page: 10 year: 2019 ident: 10.1016/j.csda.2021.107376_br0050 article-title: Editorial for the special issue on high-dimensional and functional data analysis publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2018.10.009 – volume: 8 start-page: 24 year: 2014 ident: 10.1016/j.csda.2021.107376_br0100 article-title: Functional data clustering: a survey publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-013-0158-y – volume: 34 start-page: 631 year: 2019 ident: 10.1016/j.csda.2021.107376_br0200 article-title: Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches publication-title: Comput. Stat. doi: 10.1007/s00180-018-00864-w – volume: 27 start-page: 211 year: 2010 ident: 10.1016/j.csda.2021.107376_br0160 article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application publication-title: J. Classif. doi: 10.1007/s00357-010-9054-8 – volume: 9 start-page: 1726 year: 2015 ident: 10.1016/j.csda.2021.107376_br0130 article-title: The discriminative functional mixture model for a comparative analysis of bike sharing systems publication-title: Ann. Appl. Stat. doi: 10.1214/15-AOAS861 – volume: 73 start-page: 324 year: 2017 ident: 10.1016/j.csda.2021.107376_br0190 article-title: Clustering multivariate functional data with phase variation publication-title: Biometrics doi: 10.1111/biom.12546 – year: 2019 ident: 10.1016/j.csda.2021.107376_br0110 article-title: Model-Based Clustering and Classification for Data Science: With Applications in R doi: 10.1017/9781108644181 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.csda.2021.107376_br0330 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc., Ser. B, Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 10.1016/j.csda.2021.107376_br0310 – volume: 2004 start-page: 2626 year: 2004 ident: 10.1016/j.csda.2021.107376_br0230 article-title: A model-selection-based self-splitting Gaussian mixture learning with application to speaker identification publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/S1110865704407100 – start-page: 220 year: 2013 ident: 10.1016/j.csda.2021.107376_br0250 article-title: Multi-way functional principal components analysis – volume: 88 start-page: 677 year: 2020 ident: 10.1016/j.csda.2021.107376_br0440 article-title: Tests of normality of functional data publication-title: Int. Stat. Rev. doi: 10.1111/insr.12362 – volume: 22 start-page: 1 year: 2007 ident: 10.1016/j.csda.2021.107376_br0140 article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data publication-title: Comput. Stat. doi: 10.1007/s00180-006-0013-0 – volume: 74 start-page: 267 year: 2012 ident: 10.1016/j.csda.2021.107376_br0060 article-title: Achieving near perfect classification for functional data publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/j.1467-9868.2011.01003.x – year: 2012 ident: 10.1016/j.csda.2021.107376_br0020 article-title: Inference for Functional Data with Applications doi: 10.1007/978-1-4614-3655-3 – volume: 108 start-page: 1269 year: 2013 ident: 10.1016/j.csda.2021.107376_br0070 article-title: Classification using censored functional data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.824893 – volume: 30 start-page: 468 year: 2015 ident: 10.1016/j.csda.2021.107376_br0280 article-title: Functional data analysis of amplitude and phase variation publication-title: Stat. Sci. doi: 10.1214/15-STS524 – volume: 5 start-page: 281 year: 2011 ident: 10.1016/j.csda.2021.107376_br0350 article-title: Model-based clustering of time series in group-specific functional subspaces publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-011-0095-6 – volume: 20 year: 2003 ident: 10.1016/j.csda.2021.107376_br0120 article-title: Clustering functional data publication-title: J. Classif. doi: 10.1007/s00357-003-0007-3 – volume: 81 start-page: 271 year: 2019 ident: 10.1016/j.csda.2021.107376_br0080 article-title: Clustering functional data into groups by using projections publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol. doi: 10.1111/rssb.12310 – ident: 10.1016/j.csda.2021.107376_br0300 – year: 2005 ident: 10.1016/j.csda.2021.107376_br0010 article-title: Functional Data Analysis – ident: 10.1016/j.csda.2021.107376_br0400 – start-page: 1 year: 2020 ident: 10.1016/j.csda.2021.107376_br0430 article-title: The round dataset: a drone dataset of road user trajectories at roundabouts in Germany – year: 1980 ident: 10.1016/j.csda.2021.107376_br0290 – volume: 7 year: 2013 ident: 10.1016/j.csda.2021.107376_br0210 article-title: Interpretable clustering using unsupervised binary trees publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-013-0129-3 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.csda.2021.107376_br0410 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – start-page: 727 year: 2000 ident: 10.1016/j.csda.2021.107376_br0220 article-title: X-means: extending K-means with efficient estimation of the number of clusters – volume: 6 start-page: 461 year: 1978 ident: 10.1016/j.csda.2021.107376_br0340 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – year: 2006 ident: 10.1016/j.csda.2021.107376_br0420 – volume: 1 start-page: 99 year: 2017 ident: 10.1016/j.csda.2021.107376_br0040 publication-title: Econom. Stat. – start-page: 332 year: 2019 ident: 10.1016/j.csda.2021.107376_br0240 article-title: Functional isolation forest – volume: 41 start-page: 2739 year: 2013 ident: 10.1016/j.csda.2021.107376_br0090 article-title: Unexpected properties of bandwidth choice when smoothing discrete data for constructing a functional data classifier publication-title: Ann. Stat. doi: 10.1214/13-AOS1158 – volume: 2 start-page: 193 year: 1985 ident: 10.1016/j.csda.2021.107376_br0390 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – ident: 10.1016/j.csda.2021.107376_br0360 – volume: 38 start-page: 1171 year: 2010 ident: 10.1016/j.csda.2021.107376_br0270 article-title: Defining probability density for a distribution of random functions publication-title: Ann. Stat. doi: 10.1214/09-AOS741 – volume: 71 start-page: 92 year: 2014 ident: 10.1016/j.csda.2021.107376_br0170 article-title: Model-based clustering for multivariate functional data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2012.12.004 – volume: 62 start-page: 401 year: 2013 ident: 10.1016/j.csda.2021.107376_br0150 article-title: Multivariate functional clustering for the morphological analysis of electrocardiograph curves publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat. doi: 10.1111/j.1467-9876.2012.01062.x – start-page: 1 year: 2020 ident: 10.1016/j.csda.2021.107376_br0450 article-title: Low-rank covariance function estimation for multidimensional functional data publication-title: J. Am. Stat. Assoc. |
| SSID | ssj0002478 |
| Score | 2.4261281 |
| Snippet | •An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of... A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional... We propose a model-based clustering algorithm for a general class of functional data for which the components could be curves or images. The random functional... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107376 |
| SubjectTerms | algorithms data analysis data collection Gaussian mixtures Machine Learning Model-based clustering Multivariate functional principal components Statistics |
| Title | Clustering multivariate functional data using unsupervised binary trees |
| URI | https://dx.doi.org/10.1016/j.csda.2021.107376 https://www.proquest.com/docview/2636652064 https://hal.science/hal-03391643 |
| Volume | 168 |
| WOSCitedRecordID | wos000721109600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002478 issn: 0167-9473 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jgd4QHyKMkAB8VZlqj8SO4_VNBgIpkkM1DcrcRyNrUqrZan25-_OdtLSiQmQeEkrq7ZT3-W-cvc7Qt5niUgr0GyxrIyNhapUXJTSxDbJJ1VJaSm5bzYhj4_VbJadDAZVVwuzmsu6VtfX2fK_khrGgNhYOvsX5O4XhQH4DkSHK5Adrn9E-IN5i-AHGAJw2YIr8IbBoByjBguBP0wLHbcuStDWTbtEedGgKeqLc_FFdbNptfrWD13YEGuQArwz8o1bLA_YJn06D8jU1cVPHy71ndN60Q5_HnFjLxYeENLxYt7PPIHF59aZtD9yVIkBGjxEJsCpXSe0uHDZrZIZH8EEyZwJ379k33qpqySY-Tz5VSz7dju3RLyPNpzvm6ZE3ChGYUhyuYWn7TT0N9wM92LU-bZ8h-wymWRqSHannw5nn3udzYTX2d3NhfIqnwm4vdPvTJidM8yl3VLpzk45fUQeBgcjmnrGeEwGtn5CHnzt0Xmbp-TjmkWiTRaJ1iwSIVUjxyLRJotEnkUixyLPyPcPh6cHR3FoqBEbnsqrODepKbOqEIoXZZmCK1nQpCqKSqS5UaJiKimZsJQbDoZ3wS01JVNGsTxLFGJ8PCfDelHbFyTKYAWW5lYJa0UGnxSsoWxSUCtKyysxIrQ7I20C2jw2PZnrLq3wXOO5ajxX7c91RMb9nKXHWrnz10l39DpYi94K1MApd857B3TqN0B49aPpF41jE45l6IKv6Ii87cioQd7iS7S8tou20SzlaZowsORf_uMN7JH766flFRleXbb2NblnVvDsXr4JnHkDpI6pzw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+multivariate+functional+data+using+unsupervised+binary+trees&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Golovkine%2C+Steven&rft.au=Klutchnikoff%2C+Nicolas&rft.au=Patilea%2C+Valentin&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=168&rft_id=info:doi/10.1016%2Fj.csda.2021.107376&rft.externalDocID=S0167947321002103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |