Computing the Pareto frontier of a bi-objective bi-level linear problem using a multiobjective mixed-integer programming algorithm
In this article, we study the bi-level linear programming problem with multiple objective functions on the upper level (with particular focus on the bi-objective case) and a single objective function on the lower level. We have restricted our attention to this type of problem because the considerati...
Uložené v:
| Vydané v: | Optimization Ročník 61; číslo 3; s. 335 - 358 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis Group
01.03.2012
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this article, we study the bi-level linear programming problem with multiple objective functions on the upper level (with particular focus on the bi-objective case) and a single objective function on the lower level. We have restricted our attention to this type of problem because the consideration of several objectives at the lower level raises additional issues for the bi-level decision process resulting from the difficulty of anticipating a decision from the lower level decision maker. We examine some properties of the problem and propose a methodological approach based on the reformulation of the problem as a multiobjective mixed 0-1 linear programming problem. The basic idea consists in applying a reference point algorithm that has been originally developed as an interactive procedure for multiobjective mixed-integer programming. This approach further enables characterization of the whole Pareto frontier in the bi-objective case. Two illustrative numerical examples are included to show the viability of the proposed methodology. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2010.511674 |