Meta-dynamical adaptive systems and their applications to a fractal algorithm and a biological model

In this article, one defines two models of adaptive systems: the meta- dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive differential equations using the notion of variable dimension spaces. This concept of variable dimension spaces relates the notion of spaces...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica. D Ročník 207; číslo 1; s. 79 - 90
Hlavní autoři: Moulay, Emmanuel, Baguelin, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.07.2005
Elsevier
Témata:
ISSN:0167-2789, 1872-8022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, one defines two models of adaptive systems: the meta- dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive differential equations using the notion of variable dimension spaces. This concept of variable dimension spaces relates the notion of spaces to the notion of dimensions. First, a computational model of the Douady’s Rabbit fractal is obtained by using the meta-dynamical adaptive system concept. Then, we focus on a defense-attack biological model described by our two formalisms.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2005.05.013