Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems

This paper focuses on the parameter estimation problem of multivariate output-error autoregressive moving average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEAR...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of control, automation, and systems Ročník 17; číslo 6; s. 1547 - 1557
Hlavní autori: Guo, Yunze, Wan, Lijuan, Xu, Ling, Ding, Feng, Alsaedi, Ahmed, Hayat, Tasawar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bucheon / Seoul Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers 01.06.2019
Springer Nature B.V
제어·로봇·시스템학회
Predmet:
ISSN:1598-6446, 2005-4092
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on the parameter estimation problem of multivariate output-error autoregressive moving average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEARMA system. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm possesses higher identification accuracy. The simulation results confirm the effectiveness of the proposed algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s12555-018-0512-0
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-018-0512-0