Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems

This paper focuses on the parameter estimation problem of multivariate output-error autoregressive moving average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEAR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems Jg. 17; H. 6; S. 1547 - 1557
Hauptverfasser: Guo, Yunze, Wan, Lijuan, Xu, Ling, Ding, Feng, Alsaedi, Ahmed, Hayat, Tasawar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bucheon / Seoul Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers 01.06.2019
Springer Nature B.V
제어·로봇·시스템학회
Schlagworte:
ISSN:1598-6446, 2005-4092
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the parameter estimation problem of multivariate output-error autoregressive moving average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEARMA system. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm possesses higher identification accuracy. The simulation results confirm the effectiveness of the proposed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
http://link.springer.com/article/10.1007/s12555-018-0512-0
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-018-0512-0