Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems
This paper focuses on the parameter estimation problem of multivariate output-error autoregressive moving average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEAR...
Gespeichert in:
| Veröffentlicht in: | International journal of control, automation, and systems Jg. 17; H. 6; S. 1547 - 1557 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bucheon / Seoul
Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
01.06.2019
Springer Nature B.V 제어·로봇·시스템학회 |
| Schlagworte: | |
| ISSN: | 1598-6446, 2005-4092 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper focuses on the parameter estimation problem of multivariate output-error autoregressive moving average (M-OEARMA) systems. By applying the auxiliary model identification idea and the decomposition technique, we derive a two-stage recursive least squares algorithm for estimating the M-OEARMA system. Compared with the auxiliary model based recursive least squares algorithm, the proposed algorithm possesses higher identification accuracy. The simulation results confirm the effectiveness of the proposed algorithm. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s12555-018-0512-0 |
| ISSN: | 1598-6446 2005-4092 |
| DOI: | 10.1007/s12555-018-0512-0 |