Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization
An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates fo...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 244; s. 123108 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.04.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms.
•An improved bare-bone multi-objective particle swarm optimization algorithm is proposed.•A nonlinear adaptive particle updating strategy based on exponential function is proposed.•Improved strategies to update the pbest and gbest are proposed.•The slope method and crowding distance method are combined to determine the POF.•Benchmark test functions and three CHPEED problems are used to verify the performance. |
|---|---|
| AbstractList | An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms. An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms. •An improved bare-bone multi-objective particle swarm optimization algorithm is proposed.•A nonlinear adaptive particle updating strategy based on exponential function is proposed.•Improved strategies to update the pbest and gbest are proposed.•The slope method and crowding distance method are combined to determine the POF.•Benchmark test functions and three CHPEED problems are used to verify the performance. |
| ArticleNumber | 123108 |
| Author | Xiong, Guojiang Shuai, Maohang Hu, Xiao |
| Author_xml | – sequence: 1 givenname: Guojiang orcidid: 0000-0002-8913-7315 surname: Xiong fullname: Xiong, Guojiang email: gjxiongee@foxmail.com – sequence: 2 givenname: Maohang surname: Shuai fullname: Shuai, Maohang – sequence: 3 givenname: Xiao orcidid: 0000-0001-5251-8651 surname: Hu fullname: Hu, Xiao |
| BookMark | eNqFUctu1DAUtVArMW35AxaW2LDJYDsvhwUSGpWHVIlNu7Zs56a9UWIH25lR-Xo8hFUXsLqbc849jyty4bwDQt5ytueMNx_GPTgIj897wYTYc1FyJl-RHZdtWTStrC_IjpUNK-qqEq_JVYwjY6yWXbcjp4OfDTro6RPoRLXr6eJPEChY7_yMlsKMMaJ3tMe46GSf6BrRPVKcl-CPmWh0gMJkR3Rep4SFNyPYhEegiw4J7QQ0nnSYqV8SzvhLp6x2Qy4HPUV48_dek4cvt_eHb8Xdj6_fD5_vCls2bSoazXnDO2MGa3k3WAH1ILWoayM7WUqjjeyZ6ZpqaFstc762NQwktJ3hsue6vCbvN91s9ucKMakcx8I0aQd-jUo0-U_FBeMZ-u4FdPRrcNldRlWiq3JnZ9THDWWDjzHAoCymP5FS0DgpztR5EzWqbRN13kRtm2Ry9YK8BJx1eP4f7dNGg9zUESGoaBGchR5Drlr1Hv8t8Bsgeqxr |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2022_119969 crossref_primary_10_1007_s00500_022_07297_0 crossref_primary_10_3390_electronics13204086 crossref_primary_10_1007_s10489_023_05180_5 crossref_primary_10_1016_j_egyr_2022_06_054 crossref_primary_10_3390_en15228693 crossref_primary_10_1016_j_apenergy_2023_121890 crossref_primary_10_1016_j_ins_2022_07_148 crossref_primary_10_1177_01445987241235419 crossref_primary_10_1016_j_energy_2023_128901 crossref_primary_10_3390_su14063173 crossref_primary_10_1016_j_asoc_2023_111106 crossref_primary_10_1016_j_eswa_2025_127375 crossref_primary_10_1016_j_asoc_2024_111703 crossref_primary_10_1016_j_energy_2023_129811 crossref_primary_10_1016_j_energy_2025_137893 crossref_primary_10_1016_j_ijepes_2023_109586 crossref_primary_10_1016_j_swevo_2025_101896 crossref_primary_10_3390_a17070313 crossref_primary_10_3390_electronics13081437 crossref_primary_10_3390_fractalfract8060350 crossref_primary_10_1016_j_cep_2023_109561 crossref_primary_10_1016_j_renene_2023_04_003 crossref_primary_10_1088_1361_6501_ac8367 crossref_primary_10_1155_2023_3788453 crossref_primary_10_3390_electronics12122742 crossref_primary_10_1016_j_rser_2025_115540 crossref_primary_10_1016_j_energy_2023_127792 crossref_primary_10_3390_en15249489 crossref_primary_10_1016_j_knosys_2022_109773 crossref_primary_10_1016_j_energy_2022_124511 crossref_primary_10_1016_j_energy_2023_127703 crossref_primary_10_3390_en16093753 crossref_primary_10_1016_j_applthermaleng_2024_122781 crossref_primary_10_1016_j_egyr_2023_05_013 crossref_primary_10_1109_TPWRS_2024_3371833 crossref_primary_10_32604_cmc_2023_038300 crossref_primary_10_1016_j_energy_2022_124376 crossref_primary_10_1007_s42235_024_00504_8 crossref_primary_10_1016_j_eswa_2023_120298 crossref_primary_10_1007_s40747_023_01128_x crossref_primary_10_1016_j_energy_2023_129526 crossref_primary_10_1016_j_energy_2022_124857 crossref_primary_10_3390_electronics11060909 |
| Cites_doi | 10.1016/j.ijepes.2016.03.004 10.1016/j.enconman.2015.09.003 10.1016/j.energy.2013.04.066 10.1016/j.asoc.2016.12.046 10.1016/j.energy.2018.07.200 10.1016/j.scs.2021.102790 10.1016/j.asoc.2021.107088 10.1016/j.energy.2017.11.124 10.1016/j.apenergy.2015.09.020 10.1016/j.enconman.2021.113947 10.3390/pr8040441 10.1016/j.enconman.2014.12.029 10.1016/j.enconman.2021.114406 10.1016/j.rser.2017.06.111 10.1016/j.epsr.2006.11.012 10.1093/ce/zkaa031 10.1063/1.5048833 10.1016/j.enconman.2016.09.085 10.1016/j.rser.2017.06.024 10.1016/j.knosys.2020.106619 10.1109/ACCESS.2020.2965725 10.1016/j.knosys.2020.106463 10.1016/j.energy.2019.01.155 10.1109/59.544642 10.1016/j.asoc.2020.106158 10.1016/j.apenergy.2020.114785 10.1016/j.epsr.2012.08.005 10.1016/j.ijepes.2012.10.012 10.1016/j.asoc.2018.06.034 10.1016/j.applthermaleng.2015.12.136 10.1109/ACCESS.2020.2963887 10.1016/j.ijepes.2016.03.016 10.1109/59.336125 10.1016/j.ijepes.2013.04.014 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Apr 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.123108 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2022_123108 S0360544222000111 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-6a11619bbfcc19fc2e5f8a255b89838bab8d0b964f77a854477b0e8e79b18d1a3 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805144900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 19:55:18 EDT 2025 Wed Aug 13 09:05:07 EDT 2025 Sat Nov 29 07:20:27 EST 2025 Tue Nov 18 20:56:35 EST 2025 Fri Feb 23 02:38:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Combined heat and power system Economic environment dispatch Multi-objective optimization Particle swarm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-6a11619bbfcc19fc2e5f8a255b89838bab8d0b964f77a854477b0e8e79b18d1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5251-8651 0000-0002-8913-7315 |
| PQID | 2642940051 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2636741201 proquest_journals_2642940051 crossref_citationtrail_10_1016_j_energy_2022_123108 crossref_primary_10_1016_j_energy_2022_123108 elsevier_sciencedirect_doi_10_1016_j_energy_2022_123108 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Basu (bib7) 2013; 53 Yuan, Liu, Bucknall (bib34) 2021; 243 Liu, Luo (bib39) 2010; 30 Rezaei, Mohammad, Fuzhan (bib32) 2021; 5 Rooijers, Van Amerongen (bib3) 1994; 9 Nazari-Heris, Mohammadi-Ivatloo, Gharehpetian (bib5) 2018; 81 Tian, Zhang, Su (bib42) 2021 Sun, Deng, Li (bib11) 2020; 90 Kennedy (bib21) 2003 Nazari-Heris, Fakhim-Babaei, Mohammadi-Ivatloo (bib19) Dec. 2017 Zitzler, Thiele, Laumanns (bib41) 2003; 7 Sundaram (bib13) 2020; 8 Murugan, Mohan, Rajan, Sundari, Arunachalam (bib9) 2018; 72 Hemmati (bib36) 2021; 69 Khan (bib37) 2015; 92 Nasir (bib29) 2021; 102 Li, Wang, Zhao (bib8) 2018; 162 Meng, Mei, Yin, Peng, Guo (bib25) 2015; 105 Chen, Li, Xu (bib14) 2020; 208 Anand, Narang, Dhillon (bib16) 2019; 172 Shi, Yan, Wu (bib10) 2013; 56 Neyestani, Hatami, Hesari (bib18) 2019; 11 Mohammadi-Ivatloo, Moradi-Dalvand, Rabiee (bib15) 2013; 95 Zhang, Zhang, Li (bib38) 2017; 45 Reddy, Vaisakh (bib26) 2013; 46 Prashanth (bib35) 2021 Abdel-Basset, Mohamed, Mirjalili (bib40) 2021; 212 ali Shaabani, Seifi, Kouhanjani (bib12) 2017; 141 Ghorbani (bib24) 2016; 82 Narang, Sharma, Dhillon (bib23) 2017; 52 Kazda, Li (bib1) 2020; 8 Morawski (bib33) 2021; 234 Mahdi, Vasant, Kallimani, Watada, Fai, Abdullah-Al-Wadud (bib4) 2018; 81 Guo, Henwood, Ooijen (bib2) 1996; 11 Jordehi (bib20) 2016; 129 Kim, Kim (bib27) 2020; 265 Dong, Wang (bib28) 2020; 8 Haghrah, Nazari-Heris, Mohammadi-Ivatloo (bib22) 2016; 99 Muwaffaq (bib30) 2019; vol. 200 Wang, Yin, Abdollahi, Lahdelma, Jiao (bib31) 2015; 159 Wang, Singh (bib17) 2007; 77 Singh, Dhillon (bib6) 2016; 82 Khan (10.1016/j.energy.2022.123108_bib37) 2015; 92 Abdel-Basset (10.1016/j.energy.2022.123108_bib40) 2021; 212 Nasir (10.1016/j.energy.2022.123108_bib29) 2021; 102 Chen (10.1016/j.energy.2022.123108_bib14) 2020; 208 Ghorbani (10.1016/j.energy.2022.123108_bib24) 2016; 82 Muwaffaq (10.1016/j.energy.2022.123108_bib30) 2019; vol. 200 Rezaei (10.1016/j.energy.2022.123108_bib32) 2021; 5 Murugan (10.1016/j.energy.2022.123108_bib9) 2018; 72 Basu (10.1016/j.energy.2022.123108_bib7) 2013; 53 Shi (10.1016/j.energy.2022.123108_bib10) 2013; 56 Reddy (10.1016/j.energy.2022.123108_bib26) 2013; 46 Tian (10.1016/j.energy.2022.123108_bib42) 2021 Rooijers (10.1016/j.energy.2022.123108_bib3) 1994; 9 Wang (10.1016/j.energy.2022.123108_bib31) 2015; 159 Sun (10.1016/j.energy.2022.123108_bib11) 2020; 90 Mohammadi-Ivatloo (10.1016/j.energy.2022.123108_bib15) 2013; 95 Jordehi (10.1016/j.energy.2022.123108_bib20) 2016; 129 Zhang (10.1016/j.energy.2022.123108_bib38) 2017; 45 Yuan (10.1016/j.energy.2022.123108_bib34) 2021; 243 Kennedy (10.1016/j.energy.2022.123108_bib21) 2003 Guo (10.1016/j.energy.2022.123108_bib2) 1996; 11 Anand (10.1016/j.energy.2022.123108_bib16) 2019; 172 Meng (10.1016/j.energy.2022.123108_bib25) 2015; 105 Dong (10.1016/j.energy.2022.123108_bib28) 2020; 8 Nazari-Heris (10.1016/j.energy.2022.123108_bib5) 2018; 81 Liu (10.1016/j.energy.2022.123108_bib39) 2010; 30 Zitzler (10.1016/j.energy.2022.123108_bib41) 2003; 7 Mahdi (10.1016/j.energy.2022.123108_bib4) 2018; 81 Nazari-Heris (10.1016/j.energy.2022.123108_bib19) 2017 Morawski (10.1016/j.energy.2022.123108_bib33) 2021; 234 ali Shaabani (10.1016/j.energy.2022.123108_bib12) 2017; 141 Singh (10.1016/j.energy.2022.123108_bib6) 2016; 82 Neyestani (10.1016/j.energy.2022.123108_bib18) 2019; 11 Li (10.1016/j.energy.2022.123108_bib8) 2018; 162 Wang (10.1016/j.energy.2022.123108_bib17) 2007; 77 Hemmati (10.1016/j.energy.2022.123108_bib36) 2021; 69 Kazda (10.1016/j.energy.2022.123108_bib1) 2020; 8 Sundaram (10.1016/j.energy.2022.123108_bib13) 2020; 8 Narang (10.1016/j.energy.2022.123108_bib23) 2017; 52 Kim (10.1016/j.energy.2022.123108_bib27) 2020; 265 Prashanth (10.1016/j.energy.2022.123108_bib35) 2021 Haghrah (10.1016/j.energy.2022.123108_bib22) 2016; 99 |
| References_xml | – volume: 234 start-page: 113947 year: 2021 ident: bib33 article-title: On the suitable superstructure thermoeconomic optimization of a waste heat recovery system for a Brazilian diesel engine power plant publication-title: Energy Convers Manag – volume: 77 start-page: 1654 year: 2007 end-page: 1664 ident: bib17 article-title: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm publication-title: Electric Power Sys – volume: 102 start-page: 107088 year: 2021 ident: bib29 article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch publication-title: Appl Soft Comput – volume: 99 start-page: 465 year: 2016 end-page: 475 ident: bib22 article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation publication-title: Appl Therm Eng – volume: 81 start-page: 2128 year: 2018 end-page: 2143 ident: bib5 article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives publication-title: Renew Sustain Energy Rev – volume: 265 start-page: 114785 year: 2020 ident: bib27 article-title: Neural-network-based optimization for economic dispatch of combined heat and power systems publication-title: Appl Energy – volume: 5 start-page: 44 year: 2021 end-page: 56 ident: bib32 article-title: Biomass-fuelled combined heat and power: integration in district heating and thermal-energy storage publication-title: Clean Energy – volume: 69 start-page: 102790 year: 2021 ident: bib36 article-title: Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program publication-title: Sustain Cities Soc – year: 2021 ident: bib42 article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization publication-title: IEEE Trans Cybern – start-page: 1 year: Dec. 2017 end-page: 9 ident: bib19 article-title: A novel hybrid harmony search and particle swarm optimization method for solving combined heat and power economic dispatch publication-title: Smart Grid Conference. (SGC) – volume: 8 start-page: 16584 year: 2020 end-page: 16594 ident: bib28 article-title: New optimization algorithm inspired by kernel tricks for the economic emission dispatch problem with valve point publication-title: IEEE Access – volume: 82 start-page: 339 year: 2016 end-page: 353 ident: bib6 article-title: Multiobjective thermal power dispatch using opposition-based greedy heuristic search publication-title: Int J Electr Power Energy Syst – volume: 72 start-page: 189 year: 2018 end-page: 217 ident: bib9 article-title: Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch publication-title: Appl Soft Comput – volume: 90 start-page: 106158 year: 2020 ident: bib11 article-title: Indicator & crowding distance-based evolutionary algorithm for combined heat and power economic emission dispatch publication-title: Appl Soft Comp J – volume: vol. 200 start-page: 112090 year: 2019 ident: bib30 publication-title: Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax – volume: 141 start-page: 1892 year: 2017 end-page: 1904 ident: bib12 article-title: Stochastic multi-objective optimization of combined heat and power economic/emission dispatch publication-title: Energy – volume: 162 start-page: 237 year: 2018 end-page: 254 ident: bib8 article-title: A two-stage approach for combined heat and power economic emission dispatch: combining multi-objective optimization with integrated decision making publication-title: Energy – volume: 82 start-page: 58 year: 2016 end-page: 66 ident: bib24 article-title: Combined heat and power economic dispatch using exchange market algorithm publication-title: Int J Electr Power Energy Syst – volume: 159 start-page: 401 year: 2015 end-page: 421 ident: bib31 article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage publication-title: Appl Energy – volume: 212 start-page: 106619 year: 2021 ident: bib40 article-title: A novel whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems publication-title: Knowl Base Syst – volume: 30 start-page: 105 year: 2010 end-page: 111 ident: bib39 article-title: Environmental economic power generation dispatch using multi-objective random black hole particle swarm optimization algorithm publication-title: Proc Chin Soc Electr Eng – volume: 8 start-page: 441 year: 2020 ident: bib1 article-title: A critical review of the modeling and optimization of combined heat and power dispatch publication-title: Processes – volume: 45 start-page: 1 year: 2017 end-page: 10 ident: bib38 article-title: Research on power system environmental economic dispatch based on multi-objective particle swarm algorithm publication-title: Power System Protection and Control – volume: 52 start-page: 190 year: 2017 end-page: 202 ident: bib23 article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method publication-title: Appl Soft Comput – volume: 95 start-page: 9 year: 2013 end-page: 18 ident: bib15 article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients publication-title: Electric Power Sys – volume: 243 start-page: 114406 year: 2021 ident: bib34 article-title: Optimised MOPSO with the grey relationship analysis for the multi-criteria objective energy dispatch of a novel SOFC-solar hybrid CCHP residential system in the UK publication-title: Energy Convers Manag – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: bib41 article-title: Performance assessment of multiobjective optimizers:an analysis and review publication-title: IEEE Trans Power Syst – volume: 53 start-page: 135 year: 2013 end-page: 141 ident: bib7 article-title: Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II publication-title: Int J Electr Power Energy Syst – volume: 92 start-page: 82 year: 2015 end-page: 91 ident: bib37 article-title: Combined emission economic dispatch of power system including solar photo voltaic generation publication-title: Energy Convers Manag – volume: 56 start-page: 135e43 year: 2013 ident: bib10 article-title: Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction publication-title: Energy – start-page: 80 year: 2003 end-page: 87 ident: bib21 article-title: Bare bones particle swarms publication-title: Proceedings of the IEEE swarm intelligence symposium – volume: 46 start-page: 342 year: 2013 end-page: 352 ident: bib26 article-title: Shuffled differential evolution for economic dispatch with valve point loading effects publication-title: Int J Electr Power Energy Syst – volume: 11 start-page: 1778 year: 1996 end-page: 1784 ident: bib2 article-title: An algorithm for combined heat and power economic dispatch publication-title: IEEE Trans Power Syst – volume: 81 start-page: 3006 year: 2018 end-page: 3020 ident: bib4 article-title: A holistic review on optimization strategies for combined economic emission dispatch problem publication-title: Renew Sustain Energy Rev – volume: 8 start-page: 13748 year: 2020 end-page: 13768 ident: bib13 article-title: Combined heat and power economic emission dispatch using hybrid NSGA II-MOPSO algorithm incorporating an effective constraint handling mechanism publication-title: IEEE Access – volume: 208 start-page: 106463 year: 2020 ident: bib14 article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem publication-title: Knowl Base Syst – volume: 11 year: 2019 ident: bib18 article-title: Combined heat and power economic dispatch problem using advanced modified particle swarm optimization publication-title: J Renew Sustain Energy – start-page: 705 year: 2021 end-page: 728 ident: bib35 article-title: Comparative analysis of optimal scheduling of multi-objective non-convex combined heat and power units using AI techniques publication-title: Metaheuristic and evolutionary computation: algorithms and applications – volume: 129 start-page: 262 year: 2016 end-page: 274 ident: bib20 article-title: Time varying acceleration coefficients particle swarm optimization(TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules publication-title: Energy Convers Manag – volume: 9 start-page: 1392 year: 1994 end-page: 1398 ident: bib3 article-title: Static economic dispatch for co-generation systems publication-title: IEEE Trans Power Syst – volume: 172 start-page: 794 year: 2019 end-page: 807 ident: bib16 article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization publication-title: Energy – volume: 105 start-page: 1303 year: 2015 end-page: 1317 ident: bib25 article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem publication-title: Energy Convers Manag – volume: 82 start-page: 58 year: 2016 ident: 10.1016/j.energy.2022.123108_bib24 article-title: Combined heat and power economic dispatch using exchange market algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.03.004 – volume: 105 start-page: 1303 year: 2015 ident: 10.1016/j.energy.2022.123108_bib25 article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.003 – volume: 56 start-page: 135e43 year: 2013 ident: 10.1016/j.energy.2022.123108_bib10 article-title: Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction publication-title: Energy doi: 10.1016/j.energy.2013.04.066 – volume: 52 start-page: 190 year: 2017 ident: 10.1016/j.energy.2022.123108_bib23 article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.12.046 – volume: 45 start-page: 1 issue: 10 year: 2017 ident: 10.1016/j.energy.2022.123108_bib38 article-title: Research on power system environmental economic dispatch based on multi-objective particle swarm algorithm publication-title: Power System Protection and Control – volume: 30 start-page: 105 issue: 34 year: 2010 ident: 10.1016/j.energy.2022.123108_bib39 article-title: Environmental economic power generation dispatch using multi-objective random black hole particle swarm optimization algorithm publication-title: Proc Chin Soc Electr Eng – volume: 162 start-page: 237 year: 2018 ident: 10.1016/j.energy.2022.123108_bib8 article-title: A two-stage approach for combined heat and power economic emission dispatch: combining multi-objective optimization with integrated decision making publication-title: Energy doi: 10.1016/j.energy.2018.07.200 – volume: 69 start-page: 102790 year: 2021 ident: 10.1016/j.energy.2022.123108_bib36 article-title: Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.102790 – volume: 102 start-page: 107088 year: 2021 ident: 10.1016/j.energy.2022.123108_bib29 article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107088 – volume: 141 start-page: 1892 year: 2017 ident: 10.1016/j.energy.2022.123108_bib12 article-title: Stochastic multi-objective optimization of combined heat and power economic/emission dispatch publication-title: Energy doi: 10.1016/j.energy.2017.11.124 – volume: 159 start-page: 401 year: 2015 ident: 10.1016/j.energy.2022.123108_bib31 article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.020 – volume: 234 start-page: 113947 year: 2021 ident: 10.1016/j.energy.2022.123108_bib33 article-title: On the suitable superstructure thermoeconomic optimization of a waste heat recovery system for a Brazilian diesel engine power plant publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113947 – volume: 8 start-page: 441 issue: 4 year: 2020 ident: 10.1016/j.energy.2022.123108_bib1 article-title: A critical review of the modeling and optimization of combined heat and power dispatch publication-title: Processes doi: 10.3390/pr8040441 – volume: 92 start-page: 82 year: 2015 ident: 10.1016/j.energy.2022.123108_bib37 article-title: Combined emission economic dispatch of power system including solar photo voltaic generation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.12.029 – volume: 243 start-page: 114406 year: 2021 ident: 10.1016/j.energy.2022.123108_bib34 article-title: Optimised MOPSO with the grey relationship analysis for the multi-criteria objective energy dispatch of a novel SOFC-solar hybrid CCHP residential system in the UK publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114406 – volume: 81 start-page: 3006 year: 2018 ident: 10.1016/j.energy.2022.123108_bib4 article-title: A holistic review on optimization strategies for combined economic emission dispatch problem publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.06.111 – volume: 77 start-page: 1654 issue: 12 year: 2007 ident: 10.1016/j.energy.2022.123108_bib17 article-title: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm publication-title: Electric Power Sys doi: 10.1016/j.epsr.2006.11.012 – volume: 5 start-page: 44 issue: 1 year: 2021 ident: 10.1016/j.energy.2022.123108_bib32 article-title: Biomass-fuelled combined heat and power: integration in district heating and thermal-energy storage publication-title: Clean Energy doi: 10.1093/ce/zkaa031 – volume: 11 issue: 1 year: 2019 ident: 10.1016/j.energy.2022.123108_bib18 article-title: Combined heat and power economic dispatch problem using advanced modified particle swarm optimization publication-title: J Renew Sustain Energy doi: 10.1063/1.5048833 – volume: 129 start-page: 262 year: 2016 ident: 10.1016/j.energy.2022.123108_bib20 article-title: Time varying acceleration coefficients particle swarm optimization(TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.09.085 – volume: 81 start-page: 2128 year: 2018 ident: 10.1016/j.energy.2022.123108_bib5 article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.06.024 – volume: 212 start-page: 106619 year: 2021 ident: 10.1016/j.energy.2022.123108_bib40 article-title: A novel whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2020.106619 – volume: 8 start-page: 16584 year: 2020 ident: 10.1016/j.energy.2022.123108_bib28 article-title: New optimization algorithm inspired by kernel tricks for the economic emission dispatch problem with valve point publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965725 – volume: 208 start-page: 106463 year: 2020 ident: 10.1016/j.energy.2022.123108_bib14 article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2020.106463 – volume: 172 start-page: 794 year: 2019 ident: 10.1016/j.energy.2022.123108_bib16 article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization publication-title: Energy doi: 10.1016/j.energy.2019.01.155 – start-page: 705 year: 2021 ident: 10.1016/j.energy.2022.123108_bib35 article-title: Comparative analysis of optimal scheduling of multi-objective non-convex combined heat and power units using AI techniques – volume: 11 start-page: 1778 issue: 4 year: 1996 ident: 10.1016/j.energy.2022.123108_bib2 article-title: An algorithm for combined heat and power economic dispatch publication-title: IEEE Trans Power Syst doi: 10.1109/59.544642 – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.energy.2022.123108_bib41 article-title: Performance assessment of multiobjective optimizers:an analysis and review publication-title: IEEE Trans Power Syst – start-page: 1 year: 2017 ident: 10.1016/j.energy.2022.123108_bib19 article-title: A novel hybrid harmony search and particle swarm optimization method for solving combined heat and power economic dispatch publication-title: Smart Grid Conference. (SGC) – volume: 90 start-page: 106158 year: 2020 ident: 10.1016/j.energy.2022.123108_bib11 article-title: Indicator & crowding distance-based evolutionary algorithm for combined heat and power economic emission dispatch publication-title: Appl Soft Comp J doi: 10.1016/j.asoc.2020.106158 – year: 2021 ident: 10.1016/j.energy.2022.123108_bib42 article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization publication-title: IEEE Trans Cybern – volume: 265 start-page: 114785 year: 2020 ident: 10.1016/j.energy.2022.123108_bib27 article-title: Neural-network-based optimization for economic dispatch of combined heat and power systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114785 – volume: 95 start-page: 9 year: 2013 ident: 10.1016/j.energy.2022.123108_bib15 article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients publication-title: Electric Power Sys doi: 10.1016/j.epsr.2012.08.005 – volume: 46 start-page: 342 issue: 3 year: 2013 ident: 10.1016/j.energy.2022.123108_bib26 article-title: Shuffled differential evolution for economic dispatch with valve point loading effects publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.10.012 – volume: 72 start-page: 189 year: 2018 ident: 10.1016/j.energy.2022.123108_bib9 article-title: Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.06.034 – volume: 99 start-page: 465 year: 2016 ident: 10.1016/j.energy.2022.123108_bib22 article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.12.136 – volume: 8 start-page: 13748 year: 2020 ident: 10.1016/j.energy.2022.123108_bib13 article-title: Combined heat and power economic emission dispatch using hybrid NSGA II-MOPSO algorithm incorporating an effective constraint handling mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2963887 – volume: 82 start-page: 339 year: 2016 ident: 10.1016/j.energy.2022.123108_bib6 article-title: Multiobjective thermal power dispatch using opposition-based greedy heuristic search publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2016.03.016 – volume: vol. 200 start-page: 112090 year: 2019 ident: 10.1016/j.energy.2022.123108_bib30 – volume: 9 start-page: 1392 issue: 3 year: 1994 ident: 10.1016/j.energy.2022.123108_bib3 article-title: Static economic dispatch for co-generation systems publication-title: IEEE Trans Power Syst doi: 10.1109/59.336125 – volume: 53 start-page: 135 year: 2013 ident: 10.1016/j.energy.2022.123108_bib7 article-title: Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.04.014 – start-page: 80 year: 2003 ident: 10.1016/j.energy.2022.123108_bib21 article-title: Bare bones particle swarms |
| SSID | ssj0005899 |
| Score | 2.580927 |
| Snippet | An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123108 |
| SubjectTerms | Algorithms Cogeneration Combined heat and power system Economic environment dispatch Economics Emissions energy energy costs heat Multi-objective optimization Multiple objective analysis Optimization Pareto optimum Particle swarm optimization Pollutants Power dispatch standard deviation |
| Title | Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization |
| URI | https://dx.doi.org/10.1016/j.energy.2022.123108 https://www.proquest.com/docview/2642940051 https://www.proquest.com/docview/2636741201 |
| Volume | 244 |
| WOSCitedRecordID | wos000805144900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELegQ4IXBIOJwkBGQrxErvJZO48T6hioFB46KW-Rkzi01ZaEpmH98zl_pd0AbTzwElWuk1j5_Xy-O9_5EHonhOe6ufCJWxYRCQO_ILAIZsQr4iwTLAedWSUKT-lsxpIk_mZCeVtVToBWFdtu4-a_Qg1tALZMnf0HuPuHQgP8BtDhCrDD9U7AwwwHaxf0SClm9TkAshKaI0wKsiMrvEkfmdycaUASL5xOOQyWyr8gNVK-FiSrQf1U4YakzlZaLDqNeZ_TXvH1pVODvLk0iZzXXPw6oVCeZLrVwfO9uyFZmhjgj129Amp-7108i05Xxv7C68Ve-1knG5Mlr_cdFGDb7uJabGKWS6IwvCZ0QatwmpEntUtG_ijKtVdhNRJqyCP5ZNN_t3TZ7frZ1_T0fDpN55Nk_r75QWRRMbn5biqs3EcHPo1iNkAHJ58myeddDBBTBUb7EdrcShUA-PuL_6a73FjFlWoyf4IeG5sCn2hsnqJ7ojpED23KeXuIjia7dEboaOR5-wxdWbJgSRYMZMGKLNiSBVuyYEsWrMiCLVlwTxZ8gyzYkgUrsuB9sjxH56eT-YczYkpxkDwY0w0Zcw9MA5i-ZZ57cZn7IioZB3M0YzELWMYzVrhZPA5LSjmDT0lp5gomaJx5rPB4cIQGFQzlBcI5K8ZjRgWYFjSMCsaCouCRn8c8ZEKU4RAF9iOnuTmnXpZLuUhtQOIq1dCkEppUQzNEpL-r0ee03NKfWvxSo2tqHTIF_t1y57GFOzXTvk3BrPDjUK5wQ_S2_xsQkttvvBJ1J_vApww90Lhf3qHPK_RoN5mO0WCz7sRr9CD_uVm26zeGyL8A-aO6-w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+heat+and+power+economic+emission+dispatch+using+improved+bare-bone+multi-objective+particle+swarm+optimization&rft.jtitle=Energy+%28Oxford%29&rft.au=Xiong%2C+Guojiang&rft.au=Shuai%2C+Maohang&rft.au=Hu%2C+Xiao&rft.date=2022-04-01&rft.issn=0360-5442&rft.volume=244+p.123108-&rft_id=info:doi/10.1016%2Fj.energy.2022.123108&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |