Structural Stability of Matrix Pencils and Matrix Pairs Under Contragredient Equivalence
A complex matrix pencil A− ⋋ B is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs ( M,N ) of m × n and n × m complex matri...
Uloženo v:
| Vydáno v: | Ukrainian mathematical journal Ročník 71; číslo 5; s. 808 - 811 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2019
Springer |
| Témata: | |
| ISSN: | 0041-5995, 1573-9376 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A complex matrix pencil
A−
⋋
B
is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs (
M,N
) of
m
×
n
and
n
×
m
complex matrices (
m, n ≥
1) that are structurally stable under the contragredient equivalence (
S
−
1
MR,R
−
1
NS
) in which
S
and
R
are nondegenerate. |
|---|---|
| ISSN: | 0041-5995 1573-9376 |
| DOI: | 10.1007/s11253-019-01676-x |