Structural Stability of Matrix Pencils and Matrix Pairs Under Contragredient Equivalence

A complex matrix pencil A− ⋋ B is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs ( M,N ) of m × n and n × m complex matri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ukrainian mathematical journal Ročník 71; číslo 5; s. 808 - 811
Hlavní autoři: García-Planas, M. I., Klymchuk, T.
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2019
Springer
Témata:
ISSN:0041-5995, 1573-9376
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A complex matrix pencil A− ⋋ B is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs ( M,N ) of m × n and n × m complex matrices ( m, n ≥ 1) that are structurally stable under the contragredient equivalence ( S − 1 MR,R − 1 NS ) in which S and R are nondegenerate.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-019-01676-x