Structural Stability of Matrix Pencils and Matrix Pairs Under Contragredient Equivalence

A complex matrix pencil A− ⋋ B is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs ( M,N ) of m × n and n × m complex matri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ukrainian mathematical journal Ročník 71; číslo 5; s. 808 - 811
Hlavní autori: García-Planas, M. I., Klymchuk, T.
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2019
Springer
Predmet:
ISSN:0041-5995, 1573-9376
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A complex matrix pencil A− ⋋ B is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs ( M,N ) of m × n and n × m complex matrices ( m, n ≥ 1) that are structurally stable under the contragredient equivalence ( S − 1 MR,R − 1 NS ) in which S and R are nondegenerate.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-019-01676-x