On a Local and Nonlocal Second-Order Boundary Value Problem with In-Homogeneous Cauchy–Neumann Boundary Conditions—Applications in Engineering and Industry

A qualitative study for a second-order boundary value problem with local or nonlocal diffusion and a cubic nonlinear reaction term, endowed with in-homogeneous Cauchy–Neumann (Robin) boundary conditions, is addressed in the present paper. Provided that the initial data meet appropriate regularity co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 12; číslo 13; s. 2050
Hlavní autori: Barbu, Tudor, Miranville, Alain, Moroşanu, Costică
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.07.2024
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A qualitative study for a second-order boundary value problem with local or nonlocal diffusion and a cubic nonlinear reaction term, endowed with in-homogeneous Cauchy–Neumann (Robin) boundary conditions, is addressed in the present paper. Provided that the initial data meet appropriate regularity conditions, the existence of solutions to the nonlocal problem is given at the beginning in a function space suitably chosen. Next, under certain assumptions on the known data, we prove the well posedness (the existence, a priori estimates, regularity, uniqueness) of the classical solution to the local problem. At the end, we present a particularization of the local and nonlocal problems, with applications for image processing (reconstruction, segmentation, etc.). Some conclusions are given, as well as new directions to extend the results and methods presented in this paper.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math12132050