A type-II fuzzy collaborative forecasting approach for productivity forecasting under an uncertainty environment

Forecasting factory productivity is a critical task. However, it is not easy owing to the uncertainty of productivity. Existing methods often forecast productivity using a fuzzy number. However, the range of a fuzzy productivity forecast is wide owing to the consideration of extreme cases. In this s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of ambient intelligence and humanized computing Ročník 12; číslo 2; s. 2751 - 2763
Hlavní autori: Chen, Toly, Wang, Yu-Cheng, Chiu, Min-Chi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Predmet:
ISSN:1868-5137, 1868-5145
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Forecasting factory productivity is a critical task. However, it is not easy owing to the uncertainty of productivity. Existing methods often forecast productivity using a fuzzy number. However, the range of a fuzzy productivity forecast is wide owing to the consideration of extreme cases. In this study, a fuzzy collaborative forecasting approach is proposed to forecast factory productivity using a type-II fuzzy number and by narrowing the forecast’s range. The outer section of the type-II fuzzy number determines the range of productivity, while the inner section is defuzzified to derive the most likely value. Based on the experimental results, the proposed methodology surpassed existing methods in improving forecasting precision and accuracy, with a reduction in the mean absolute percentage error (MAPE) of up to 74%.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-020-02435-8