Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems

The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an intercha...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 216; p. 119245
Main Authors: Yin, Linfei, Wang, Tao, Zheng, Baomin
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.02.2021
Elsevier BV
Subjects:
ISSN:0360-5442, 1873-6785
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an interchange objective value method. Therefore, an adaptive interchange objective value method is proposed for distributed multi-objective optimization problems. The proposed adaptive interchange objective value method updates the reward coefficients of a basic analytical distributed multi-objective optimization algorithm in the iteration process of solving distributed multi-objective optimization problems. The adaptive interchange objective value method obtains multiple satisfy optimal objectives for multiple subsidiary distributed multi-objective optimization problems security and quickly. To verify the feasibility and effectiveness of the adaptive interchange objective value method for the analytical distributed multi-objective optimization problems, the analytical distributed multi-objective optimal power flow problems under IEEE 118-bus, IEEE 300-bus power system and the medium part of the European system with 1472-bus test system are simulated. The numerical simulation results under these three cases show that the proposed adaptive interchange objective value method can obtain multiple distributed objectives for analytical distributed multi-objective optimal power flow problems security and quickly. •Convergence speed of distributed multi-objective optimization problems is considered.•Adaptive operation is introduced into interchange objective value (IOV) method.•Analytic adaptive interchange objective value (AIOV) method is proposed.•The AIOV method can obtain higher convergence speed than the IOV method.•Distributed multi-objective OPF problems are solved by AIOV security and quickly.
AbstractList The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an interchange objective value method. Therefore, an adaptive interchange objective value method is proposed for distributed multi-objective optimization problems. The proposed adaptive interchange objective value method updates the reward coefficients of a basic analytical distributed multi-objective optimization algorithm in the iteration process of solving distributed multi-objective optimization problems. The adaptive interchange objective value method obtains multiple satisfy optimal objectives for multiple subsidiary distributed multi-objective optimization problems security and quickly. To verify the feasibility and effectiveness of the adaptive interchange objective value method for the analytical distributed multi-objective optimization problems, the analytical distributed multi-objective optimal power flow problems under IEEE 118-bus, IEEE 300-bus power system and the medium part of the European system with 1472-bus test system are simulated. The numerical simulation results under these three cases show that the proposed adaptive interchange objective value method can obtain multiple distributed objectives for analytical distributed multi-objective optimal power flow problems security and quickly.
The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an interchange objective value method. Therefore, an adaptive interchange objective value method is proposed for distributed multi-objective optimization problems. The proposed adaptive interchange objective value method updates the reward coefficients of a basic analytical distributed multi-objective optimization algorithm in the iteration process of solving distributed multi-objective optimization problems. The adaptive interchange objective value method obtains multiple satisfy optimal objectives for multiple subsidiary distributed multi-objective optimization problems security and quickly. To verify the feasibility and effectiveness of the adaptive interchange objective value method for the analytical distributed multi-objective optimization problems, the analytical distributed multi-objective optimal power flow problems under IEEE 118-bus, IEEE 300-bus power system and the medium part of the European system with 1472-bus test system are simulated. The numerical simulation results under these three cases show that the proposed adaptive interchange objective value method can obtain multiple distributed objectives for analytical distributed multi-objective optimal power flow problems security and quickly. •Convergence speed of distributed multi-objective optimization problems is considered.•Adaptive operation is introduced into interchange objective value (IOV) method.•Analytic adaptive interchange objective value (AIOV) method is proposed.•The AIOV method can obtain higher convergence speed than the IOV method.•Distributed multi-objective OPF problems are solved by AIOV security and quickly.
ArticleNumber 119245
Author Yin, Linfei
Zheng, Baomin
Wang, Tao
Author_xml – sequence: 1
  givenname: Linfei
  orcidid: 0000-0001-8343-3669
  surname: Yin
  fullname: Yin, Linfei
  email: yinlinfei@163.com
  organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
– sequence: 2
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
– sequence: 3
  givenname: Baomin
  surname: Zheng
  fullname: Zheng, Baomin
  organization: Dongguan Power Supply Bureau of Guangdong Power Grid Corporation, Dongguan, 511700, China
BookMark eNqFkU9P5CAYh4kZE2fUb-ChyV68dAQKhXowMWb_JSZ7Wc-E0rcjDS2zQDXjp1-0e5qDeyLhfX4_8j5s0GryEyB0RfCWYFLfDFuYIOwOW4ppviINZfwErYkUVVkLyVdojasal5wxeoY2MQ4YYy6bZo36-0m7Q7JGu0J3ep_sCxSdjSnYdk7QFePski19O4D5mPmMjPZNJ-unQrudDzY9j0XvwzLKPXv_CqHonX8t9sG3DsZ4gU577SJc_jvP0dO3r78ffpSPv77_fLh_LE1Vi1RWbceAyp4JANpoQTCrOe-FwJLUGqhhvJF103YtJ0xzQZkUoqNtzzhoWdXVObpeevPDf2aISY02GnBOT-DnqCgXrJIVwSKjX47Qwc8h28gUkw2mbKHYQpngYwzQq33IS4aDIli9y1eDWuSrd_lqkZ9jt0cxY9OHsxS0df8L3y1hyKZeLAQVjYXJQGdD_gXVeft5wV8h8aXR
CitedBy_id crossref_primary_10_1016_j_ijepes_2022_108206
crossref_primary_10_1016_j_ijepes_2023_108945
crossref_primary_10_1016_j_apenergy_2025_126377
crossref_primary_10_1016_j_energy_2024_130996
crossref_primary_10_1016_j_jclepro_2023_140130
crossref_primary_10_1186_s10033_024_01037_1
crossref_primary_10_1016_j_apenergy_2021_117391
crossref_primary_10_1016_j_apenergy_2023_122106
crossref_primary_10_1016_j_neucom_2024_128203
crossref_primary_10_1016_j_energy_2021_121478
crossref_primary_10_1016_j_segan_2023_101054
crossref_primary_10_1016_j_ijepes_2023_109584
crossref_primary_10_1016_j_energy_2021_120964
Cites_doi 10.1016/j.chaos.2019.07.011
10.1016/j.energy.2018.02.083
10.1016/j.energy.2017.04.093
10.1016/j.enconman.2015.09.049
10.1016/j.energy.2019.06.051
10.1109/TSG.2017.2676179
10.1016/j.segan.2020.100331
10.1016/j.apenergy.2019.01.149
10.1080/02331934.2016.1227808
10.1109/TPWRS.2013.2251015
10.1016/j.apenergy.2018.06.049
10.1109/TSG.2019.2902255
10.1109/TSTE.2015.2478488
10.1016/j.ijepes.2019.04.045
10.1016/j.enconman.2018.08.046
10.1016/j.ijepes.2017.08.004
10.1021/acs.iecr.9b05315
10.1016/j.apenergy.2018.08.034
10.1016/j.rser.2018.05.026
10.1016/j.automatica.2019.01.012
10.1016/j.ijepes.2017.12.020
10.1016/j.apenergy.2016.12.080
10.1109/TSG.2017.2704922
10.1016/j.rser.2016.12.102
10.1016/j.epsr.2016.10.048
10.1016/j.apenergy.2016.07.110
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2020.119245
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2020_119245
S0360544220323525
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-3bd4e28f47ee29a7104655f770816ae2c459869bdb514a5724877d2bf45ea8363
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603310100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 07:49:59 EDT 2025
Wed Aug 13 06:28:48 EDT 2025
Sat Nov 29 07:24:11 EST 2025
Tue Nov 18 22:18:47 EST 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimal power flow
Adaptive interchange objective value method
Distributed multi-objective optimization problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-3bd4e28f47ee29a7104655f770816ae2c459869bdb514a5724877d2bf45ea8363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8343-3669
PQID 2489024107
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2574383107
proquest_journals_2489024107
crossref_primary_10_1016_j_energy_2020_119245
crossref_citationtrail_10_1016_j_energy_2020_119245
elsevier_sciencedirect_doi_10_1016_j_energy_2020_119245
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tang, Zhang (bib2) 2019; 182
Zhang, Cheng, Li, Tai, Wang, Li (bib8) 2018; 226
Qu, Yu, Huang, Yang, Zhang (bib15) 2018; 149
Karasu, Altan (bib7) 2019
Tran, Narikiyo, Kawanishi, Kikuchi, Takaba (bib23) 2018; 174
Ili, Sui, Havelka, Marui (bib5) 2020; 22
Huo, Blond, Gu, Wei, Yu (bib31) 2018; 95
Altan, Karasu, Bekiros (bib9) 2019; 126
Bigi, Passacantando (bib17) 2017; 66
Zhang, Yu, Yang, Zheng, Huang (bib24) 2015; 106
Lu, Liu, Lin, Li (bib14) 2019; 10
Abdi, Beigvand, Scala (bib19) 2017; 71
bib27
Matpower (bib29)
Tian, Lu, Zhang, Tan, Jin (bib6) 2020
Yin, Wang, Wang, Zheng (bib3) 2019; 239
Fliscounakis, Panciatici, Capitanescu, Wehenkel (bib28) 2013; 28
Zhou, Ai (bib16) 2019; 112
Nguyen, Narikiyo, Kawanishi (bib13) 2018; 9
Mazhari, Kouhsari, Ramirez (bib22) 2017; 143
bib26
Fu, Liu, Li (bib4) 2016; 7
Garca-Villalobos, Zamora, KnezoviA, Marinelli (bib10) 2016; 180
Grecu, Aceleanu, Albulescu (bib11) 2018; 93
Sun, Hahn, Liu (bib21) 2018; 99
Tang, Dvijotham, Low (bib18) 2017; 8
Verma, Mohammed, Mangal, Manik (bib30) 2017; 129
Salehisadaghiani, Shi, Pavel (bib12) 2019; 103
Wang, He, Zhu (bib1) 2020; 59
Wang, Chang, Meng, Wang (bib20) 2018; 229
Zhang, Chen, Yu, Yang, Qu, Mao (bib25) 2017; 189
Sun (10.1016/j.energy.2020.119245_bib21) 2018; 99
Wang (10.1016/j.energy.2020.119245_bib20) 2018; 229
Yin (10.1016/j.energy.2020.119245_bib3) 2019; 239
Qu (10.1016/j.energy.2020.119245_bib15) 2018; 149
Salehisadaghiani (10.1016/j.energy.2020.119245_bib12) 2019; 103
Zhou (10.1016/j.energy.2020.119245_bib16) 2019; 112
Lu (10.1016/j.energy.2020.119245_bib14) 2019; 10
Tang (10.1016/j.energy.2020.119245_bib18) 2017; 8
Zhang (10.1016/j.energy.2020.119245_bib25) 2017; 189
Fliscounakis (10.1016/j.energy.2020.119245_bib28) 2013; 28
Abdi (10.1016/j.energy.2020.119245_bib19) 2017; 71
Verma (10.1016/j.energy.2020.119245_bib30) 2017; 129
Mazhari (10.1016/j.energy.2020.119245_bib22) 2017; 143
Nguyen (10.1016/j.energy.2020.119245_bib13) 2018; 9
Tian (10.1016/j.energy.2020.119245_bib6) 2020
Fu (10.1016/j.energy.2020.119245_bib4) 2016; 7
Tran (10.1016/j.energy.2020.119245_bib23) 2018; 174
Wang (10.1016/j.energy.2020.119245_bib1) 2020; 59
Tang (10.1016/j.energy.2020.119245_bib2) 2019; 182
Altan (10.1016/j.energy.2020.119245_bib9) 2019; 126
Karasu (10.1016/j.energy.2020.119245_bib7) 2019
Zhang (10.1016/j.energy.2020.119245_bib24) 2015; 106
Zhang (10.1016/j.energy.2020.119245_bib8) 2018; 226
Bigi (10.1016/j.energy.2020.119245_bib17) 2017; 66
Ili (10.1016/j.energy.2020.119245_bib5) 2020; 22
Garca-Villalobos (10.1016/j.energy.2020.119245_bib10) 2016; 180
Grecu (10.1016/j.energy.2020.119245_bib11) 2018; 93
Matpower (10.1016/j.energy.2020.119245_bib29)
Huo (10.1016/j.energy.2020.119245_bib31) 2018; 95
References_xml – start-page: 8
  year: 2019
  end-page: 11
  ident: bib7
  article-title: Recognition model for solar radiation time series based on random forest with feature selection approach
  publication-title: 2019 11th international conference on electrical and electronics engineering (ELECO), IEEE, IEEE, bursa, Turkey, Turkey
– volume: 126
  start-page: 325
  year: 2019
  end-page: 336
  ident: bib9
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques, Chaos
  publication-title: Solitons & Fractals
– volume: 180
  start-page: 155
  year: 2016
  end-page: 168
  ident: bib10
  article-title: Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks
  publication-title: Appl Energy
– volume: 71
  start-page: 742
  year: 2017
  end-page: 766
  ident: bib19
  article-title: A review of optimal power flow studies applied to smart grids and microgrids
  publication-title: Renew Sustain Energy Rev
– volume: 189
  start-page: 157
  year: 2017
  end-page: 176
  ident: bib25
  article-title: Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems
  publication-title: Appl Energy
– ident: bib26
  article-title: case 118
– volume: 229
  start-page: 945
  year: 2018
  end-page: 962
  ident: bib20
  article-title: Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems
  publication-title: Appl Energy
– volume: 129
  start-page: 148
  year: 2017
  end-page: 157
  ident: bib30
  article-title: Minimization of energy consumption in multi-stage evaporator system of kraft recovery process using interior-point method
  publication-title: Energy
– volume: 59
  start-page: 1202
  year: 2020
  end-page: 1217
  ident: bib1
  article-title: Energy and production efficiency optimization of an ethylene plant considering process operation and structure
  publication-title: Ind Eng Chem Res
– volume: 182
  start-page: 37
  year: 2019
  end-page: 47
  ident: bib2
  article-title: The multi-objective optimization of combustion system operations based on deep data-driven models
  publication-title: Energy
– volume: 22
  start-page: 100331
  year: 2020
  ident: bib5
  article-title: Centralized radial feeder protection in electric power distribution using artificial neural networks
  publication-title: Sustainable Energy, Grids and Networks
– volume: 106
  start-page: 543
  year: 2015
  end-page: 556
  ident: bib24
  article-title: Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems
  publication-title: Energy Convers Manag
– volume: 9
  start-page: 4964
  year: 2018
  end-page: 4974
  ident: bib13
  article-title: Optimal demand response and real-time pricing by a sequential distributed consensus-based admm approach
  publication-title: IEEE Transactions on Smart Grid
– ident: bib27
  article-title: case 300
– volume: 95
  start-page: 36
  year: 2018
  end-page: 46
  ident: bib31
  article-title: Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach
  publication-title: Int J Electr Power Energy Syst
– volume: 7
  start-page: 139
  year: 2016
  end-page: 149
  ident: bib4
  article-title: Multiobjective stochastic economic dispatch with variable wind generation using scenario-based decomposition and asynchronous block iteration
  publication-title: IEEE Transactions on Sustainable Energy
– ident: bib29
  article-title: case1354pegase
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib6
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 149
  start-page: 779
  year: 2018
  end-page: 791
  ident: bib15
  article-title: Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market
  publication-title: Energy
– volume: 226
  start-page: 743
  year: 2018
  end-page: 755
  ident: bib8
  article-title: Multi-objective distributed generation planning in distribution network considering correlations among uncertainties
  publication-title: Appl Energy
– volume: 112
  start-page: 109
  year: 2019
  end-page: 126
  ident: bib16
  article-title: Distributed economic and environmental dispatch in two kinds of cchp microgrid clusters
  publication-title: Int J Electr Power Energy Syst
– volume: 103
  start-page: 27
  year: 2019
  end-page: 35
  ident: bib12
  article-title: Distributed nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers
  publication-title: Automatica
– volume: 8
  start-page: 2963
  year: 2017
  end-page: 2973
  ident: bib18
  article-title: Real-time optimal power flow
  publication-title: IEEE Transactions on Smart Grid
– volume: 10
  start-page: 6320
  year: 2019
  end-page: 6331
  ident: bib14
  article-title: Incremental-oriented ADMM for distributed optimal power flow with discrete variables in distribution networks
  publication-title: IEEE Transactions on Smart Grid
– volume: 66
  start-page: 1955
  year: 2017
  end-page: 1972
  ident: bib17
  article-title: Auxiliary problem principles for equilibria
  publication-title: Optimization
– volume: 28
  start-page: 4909
  year: 2013
  end-page: 4917
  ident: bib28
  article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions
  publication-title: IEEE Trans Power Syst
– volume: 174
  start-page: 475
  year: 2018
  end-page: 488
  ident: bib23
  article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory
  publication-title: Energy Convers Manag
– volume: 239
  start-page: 1066
  year: 2019
  end-page: 1076
  ident: bib3
  article-title: Interchange objective value method for distributed multi-objective optimization: theory, application, implementation
  publication-title: Appl Energy
– volume: 143
  start-page: 669
  year: 2017
  end-page: 681
  ident: bib22
  article-title: A novel frequency-domain approach for distributed harmonic analysis of multi-area interconnected power systems
  publication-title: Elec Power Syst Res
– volume: 99
  start-page: 45
  year: 2018
  end-page: 56
  ident: bib21
  article-title: Cyber security of a power grid: state-of-the-art
  publication-title: Int J Electr Power Energy Syst
– volume: 93
  start-page: 691
  year: 2018
  end-page: 700
  ident: bib11
  article-title: The economic, social and environmental impact of shale gas exploitation in Romania: a cost-benefit analysis
  publication-title: Renew Sustain Energy Rev
– volume: 126
  start-page: 325
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib9
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques, Chaos
  publication-title: Solitons & Fractals
  doi: 10.1016/j.chaos.2019.07.011
– volume: 149
  start-page: 779
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib15
  article-title: Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.083
– volume: 129
  start-page: 148
  year: 2017
  ident: 10.1016/j.energy.2020.119245_bib30
  article-title: Minimization of energy consumption in multi-stage evaporator system of kraft recovery process using interior-point method
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.093
– volume: 106
  start-page: 543
  year: 2015
  ident: 10.1016/j.energy.2020.119245_bib24
  article-title: Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.049
– volume: 182
  start-page: 37
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib2
  article-title: The multi-objective optimization of combustion system operations based on deep data-driven models
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.051
– start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2020.119245_bib6
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 9
  start-page: 4964
  issue: 5
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib13
  article-title: Optimal demand response and real-time pricing by a sequential distributed consensus-based admm approach
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2676179
– volume: 22
  start-page: 100331
  year: 2020
  ident: 10.1016/j.energy.2020.119245_bib5
  article-title: Centralized radial feeder protection in electric power distribution using artificial neural networks
  publication-title: Sustainable Energy, Grids and Networks
  doi: 10.1016/j.segan.2020.100331
– volume: 239
  start-page: 1066
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib3
  article-title: Interchange objective value method for distributed multi-objective optimization: theory, application, implementation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.149
– volume: 66
  start-page: 1955
  issue: 12
  year: 2017
  ident: 10.1016/j.energy.2020.119245_bib17
  article-title: Auxiliary problem principles for equilibria
  publication-title: Optimization
  doi: 10.1080/02331934.2016.1227808
– volume: 28
  start-page: 4909
  issue: 4
  year: 2013
  ident: 10.1016/j.energy.2020.119245_bib28
  article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2251015
– volume: 226
  start-page: 743
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib8
  article-title: Multi-objective distributed generation planning in distribution network considering correlations among uncertainties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.049
– volume: 10
  start-page: 6320
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib14
  article-title: Incremental-oriented ADMM for distributed optimal power flow with discrete variables in distribution networks
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2019.2902255
– volume: 7
  start-page: 139
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2020.119245_bib4
  article-title: Multiobjective stochastic economic dispatch with variable wind generation using scenario-based decomposition and asynchronous block iteration
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2015.2478488
– volume: 112
  start-page: 109
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib16
  article-title: Distributed economic and environmental dispatch in two kinds of cchp microgrid clusters
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.04.045
– volume: 174
  start-page: 475
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib23
  article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.08.046
– start-page: 8
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib7
  article-title: Recognition model for solar radiation time series based on random forest with feature selection approach
– volume: 95
  start-page: 36
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib31
  article-title: Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2017.08.004
– volume: 59
  start-page: 1202
  issue: 3
  year: 2020
  ident: 10.1016/j.energy.2020.119245_bib1
  article-title: Energy and production efficiency optimization of an ethylene plant considering process operation and structure
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b05315
– volume: 229
  start-page: 945
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib20
  article-title: Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.034
– volume: 93
  start-page: 691
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib11
  article-title: The economic, social and environmental impact of shale gas exploitation in Romania: a cost-benefit analysis
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.05.026
– volume: 103
  start-page: 27
  year: 2019
  ident: 10.1016/j.energy.2020.119245_bib12
  article-title: Distributed nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.01.012
– volume: 99
  start-page: 45
  year: 2018
  ident: 10.1016/j.energy.2020.119245_bib21
  article-title: Cyber security of a power grid: state-of-the-art
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2017.12.020
– volume: 189
  start-page: 157
  year: 2017
  ident: 10.1016/j.energy.2020.119245_bib25
  article-title: Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.080
– volume: 8
  start-page: 2963
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2020.119245_bib18
  article-title: Real-time optimal power flow
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2704922
– volume: 71
  start-page: 742
  year: 2017
  ident: 10.1016/j.energy.2020.119245_bib19
  article-title: A review of optimal power flow studies applied to smart grids and microgrids
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.12.102
– volume: 143
  start-page: 669
  year: 2017
  ident: 10.1016/j.energy.2020.119245_bib22
  article-title: A novel frequency-domain approach for distributed harmonic analysis of multi-area interconnected power systems
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2016.10.048
– volume: 180
  start-page: 155
  year: 2016
  ident: 10.1016/j.energy.2020.119245_bib10
  article-title: Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.110
– ident: 10.1016/j.energy.2020.119245_bib29
SSID ssj0005899
Score 2.4051886
Snippet The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119245
SubjectTerms Adaptive algorithms
Adaptive interchange objective value method
Algorithms
Computer simulation
Distributed multi-objective optimization problems
Electric power distribution
energy
Iterative methods
Mathematical models
Multiple objective analysis
Optimal power flow
Optimization
Optimization algorithms
Power flow
Reinforcement
Security
Title Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems
URI https://dx.doi.org/10.1016/j.energy.2020.119245
https://www.proquest.com/docview/2489024107
https://www.proquest.com/docview/2574383107
Volume 216
WOSCitedRecordID wos000603310100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLegQ4ILgsHEYCAjIS6RUep8ODkO1AlQVThkqJwsJ7FHqzYJTQf983n-SLIN0MaBS1QlL43b388vz8_vA6FXKpFJAXYwYVLCAgUWHEQUipJUURWXqRLMZPF_mbLZLJnP08-u22hr2gmwqkp2u7T5r1DDOQBbp87-A9z9l8IJ-AygwxFgh-ONgDdlRqyHWpSiMaFBpS6PqztbgXlpQghJnS-tqvNqEFm7bExPrM7qzWL7bW3CD80lnaqlW6l5alX_9FwDmvaSR9_mD-rCpTsbK997F77aEgVTHfO1GJz3VsFkoh781tKeeyvqtSsG7nwRdNyFL6shB8snURhe0q90HHsNqGZY6UXkj1rbOhCWb6QZLizaqe_kh7dUtzM_-8RPTqdTnk3m2evmO9H9w_Q-u2umchvtURalyQjtHX-YzD8O4T6J6SXaj7BLozSxfr8_-G9mypUXtrFCsgfovls-4GML-0N0S1b76G6XXd7uo4PJkLkIgk51t4-QGniBO17gC7zAV3iBL_IC97zAADB2vMCGF1jzAne8eIxOTybZu_fENdkgRRCzLQnyMpQ0USFMVpoKpvf8o0gxpjuyCEmLUFfwT_MyB9NaRIzCCpeVNFdhJEUSxMEBGlV1JZ8gXDAK9n-eCqH8UMR-UpapHOeqHIc5PIEdoqD7T3nhKtDrRigr3oUaLrlFgmskuEXiEJH-rsZWYLlGnnVwcWdFWuuQA92uufOoQ5e7Cd1y-L0p2LFjH4b_sr8MOlhvrIlK1ucgEzFd8Rdknt5A5hm6N8ydIzTabs7lc3Sn-LFdtJsXjre_APyJrQM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+adaptive+distributed+multi-objective+optimization+algorithm+for+optimal+power+flow+problems&rft.jtitle=Energy+%28Oxford%29&rft.au=Yin%2C+Linfei&rft.au=Wang%2C+Tao&rft.au=Zheng%2C+Baomin&rft.date=2021-02-01&rft.issn=0360-5442&rft.volume=216+p.119245-&rft_id=info:doi/10.1016%2Fj.energy.2020.119245&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon