Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems
The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an intercha...
Saved in:
| Published in: | Energy (Oxford) Vol. 216; p. 119245 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.02.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0360-5442, 1873-6785 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an interchange objective value method. Therefore, an adaptive interchange objective value method is proposed for distributed multi-objective optimization problems. The proposed adaptive interchange objective value method updates the reward coefficients of a basic analytical distributed multi-objective optimization algorithm in the iteration process of solving distributed multi-objective optimization problems. The adaptive interchange objective value method obtains multiple satisfy optimal objectives for multiple subsidiary distributed multi-objective optimization problems security and quickly. To verify the feasibility and effectiveness of the adaptive interchange objective value method for the analytical distributed multi-objective optimization problems, the analytical distributed multi-objective optimal power flow problems under IEEE 118-bus, IEEE 300-bus power system and the medium part of the European system with 1472-bus test system are simulated. The numerical simulation results under these three cases show that the proposed adaptive interchange objective value method can obtain multiple distributed objectives for analytical distributed multi-objective optimal power flow problems security and quickly.
•Convergence speed of distributed multi-objective optimization problems is considered.•Adaptive operation is introduced into interchange objective value (IOV) method.•Analytic adaptive interchange objective value (AIOV) method is proposed.•The AIOV method can obtain higher convergence speed than the IOV method.•Distributed multi-objective OPF problems are solved by AIOV security and quickly. |
|---|---|
| AbstractList | The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an interchange objective value method. Therefore, an adaptive interchange objective value method is proposed for distributed multi-objective optimization problems. The proposed adaptive interchange objective value method updates the reward coefficients of a basic analytical distributed multi-objective optimization algorithm in the iteration process of solving distributed multi-objective optimization problems. The adaptive interchange objective value method obtains multiple satisfy optimal objectives for multiple subsidiary distributed multi-objective optimization problems security and quickly. To verify the feasibility and effectiveness of the adaptive interchange objective value method for the analytical distributed multi-objective optimization problems, the analytical distributed multi-objective optimal power flow problems under IEEE 118-bus, IEEE 300-bus power system and the medium part of the European system with 1472-bus test system are simulated. The numerical simulation results under these three cases show that the proposed adaptive interchange objective value method can obtain multiple distributed objectives for analytical distributed multi-objective optimal power flow problems security and quickly. The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization algorithms. An adaptive operation is introduced into the only analytic distributed multi-objective optimization algorithm, which is an interchange objective value method. Therefore, an adaptive interchange objective value method is proposed for distributed multi-objective optimization problems. The proposed adaptive interchange objective value method updates the reward coefficients of a basic analytical distributed multi-objective optimization algorithm in the iteration process of solving distributed multi-objective optimization problems. The adaptive interchange objective value method obtains multiple satisfy optimal objectives for multiple subsidiary distributed multi-objective optimization problems security and quickly. To verify the feasibility and effectiveness of the adaptive interchange objective value method for the analytical distributed multi-objective optimization problems, the analytical distributed multi-objective optimal power flow problems under IEEE 118-bus, IEEE 300-bus power system and the medium part of the European system with 1472-bus test system are simulated. The numerical simulation results under these three cases show that the proposed adaptive interchange objective value method can obtain multiple distributed objectives for analytical distributed multi-objective optimal power flow problems security and quickly. •Convergence speed of distributed multi-objective optimization problems is considered.•Adaptive operation is introduced into interchange objective value (IOV) method.•Analytic adaptive interchange objective value (AIOV) method is proposed.•The AIOV method can obtain higher convergence speed than the IOV method.•Distributed multi-objective OPF problems are solved by AIOV security and quickly. |
| ArticleNumber | 119245 |
| Author | Yin, Linfei Zheng, Baomin Wang, Tao |
| Author_xml | – sequence: 1 givenname: Linfei orcidid: 0000-0001-8343-3669 surname: Yin fullname: Yin, Linfei email: yinlinfei@163.com organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi, 530004, China – sequence: 2 givenname: Tao surname: Wang fullname: Wang, Tao organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi, 530004, China – sequence: 3 givenname: Baomin surname: Zheng fullname: Zheng, Baomin organization: Dongguan Power Supply Bureau of Guangdong Power Grid Corporation, Dongguan, 511700, China |
| BookMark | eNqFkU9P5CAYh4kZE2fUb-ChyV68dAQKhXowMWb_JSZ7Wc-E0rcjDS2zQDXjp1-0e5qDeyLhfX4_8j5s0GryEyB0RfCWYFLfDFuYIOwOW4ppviINZfwErYkUVVkLyVdojasal5wxeoY2MQ4YYy6bZo36-0m7Q7JGu0J3ep_sCxSdjSnYdk7QFePski19O4D5mPmMjPZNJ-unQrudDzY9j0XvwzLKPXv_CqHonX8t9sG3DsZ4gU577SJc_jvP0dO3r78ffpSPv77_fLh_LE1Vi1RWbceAyp4JANpoQTCrOe-FwJLUGqhhvJF103YtJ0xzQZkUoqNtzzhoWdXVObpeevPDf2aISY02GnBOT-DnqCgXrJIVwSKjX47Qwc8h28gUkw2mbKHYQpngYwzQq33IS4aDIli9y1eDWuSrd_lqkZ9jt0cxY9OHsxS0df8L3y1hyKZeLAQVjYXJQGdD_gXVeft5wV8h8aXR |
| CitedBy_id | crossref_primary_10_1016_j_ijepes_2022_108206 crossref_primary_10_1016_j_ijepes_2023_108945 crossref_primary_10_1016_j_apenergy_2025_126377 crossref_primary_10_1016_j_energy_2024_130996 crossref_primary_10_1016_j_jclepro_2023_140130 crossref_primary_10_1186_s10033_024_01037_1 crossref_primary_10_1016_j_apenergy_2021_117391 crossref_primary_10_1016_j_apenergy_2023_122106 crossref_primary_10_1016_j_neucom_2024_128203 crossref_primary_10_1016_j_energy_2021_121478 crossref_primary_10_1016_j_segan_2023_101054 crossref_primary_10_1016_j_ijepes_2023_109584 crossref_primary_10_1016_j_energy_2021_120964 |
| Cites_doi | 10.1016/j.chaos.2019.07.011 10.1016/j.energy.2018.02.083 10.1016/j.energy.2017.04.093 10.1016/j.enconman.2015.09.049 10.1016/j.energy.2019.06.051 10.1109/TSG.2017.2676179 10.1016/j.segan.2020.100331 10.1016/j.apenergy.2019.01.149 10.1080/02331934.2016.1227808 10.1109/TPWRS.2013.2251015 10.1016/j.apenergy.2018.06.049 10.1109/TSG.2019.2902255 10.1109/TSTE.2015.2478488 10.1016/j.ijepes.2019.04.045 10.1016/j.enconman.2018.08.046 10.1016/j.ijepes.2017.08.004 10.1021/acs.iecr.9b05315 10.1016/j.apenergy.2018.08.034 10.1016/j.rser.2018.05.026 10.1016/j.automatica.2019.01.012 10.1016/j.ijepes.2017.12.020 10.1016/j.apenergy.2016.12.080 10.1109/TSG.2017.2704922 10.1016/j.rser.2016.12.102 10.1016/j.epsr.2016.10.048 10.1016/j.apenergy.2016.07.110 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2021 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2020.119245 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2020_119245 S0360544220323525 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-3bd4e28f47ee29a7104655f770816ae2c459869bdb514a5724877d2bf45ea8363 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603310100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 07:49:59 EDT 2025 Wed Aug 13 06:28:48 EDT 2025 Sat Nov 29 07:24:11 EST 2025 Tue Nov 18 22:18:47 EST 2025 Fri Feb 23 02:48:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimal power flow Adaptive interchange objective value method Distributed multi-objective optimization problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-3bd4e28f47ee29a7104655f770816ae2c459869bdb514a5724877d2bf45ea8363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8343-3669 |
| PQID | 2489024107 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2574383107 proquest_journals_2489024107 crossref_primary_10_1016_j_energy_2020_119245 crossref_citationtrail_10_1016_j_energy_2020_119245 elsevier_sciencedirect_doi_10_1016_j_energy_2020_119245 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 2021-02-00 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Tang, Zhang (bib2) 2019; 182 Zhang, Cheng, Li, Tai, Wang, Li (bib8) 2018; 226 Qu, Yu, Huang, Yang, Zhang (bib15) 2018; 149 Karasu, Altan (bib7) 2019 Tran, Narikiyo, Kawanishi, Kikuchi, Takaba (bib23) 2018; 174 Ili, Sui, Havelka, Marui (bib5) 2020; 22 Huo, Blond, Gu, Wei, Yu (bib31) 2018; 95 Altan, Karasu, Bekiros (bib9) 2019; 126 Bigi, Passacantando (bib17) 2017; 66 Zhang, Yu, Yang, Zheng, Huang (bib24) 2015; 106 Lu, Liu, Lin, Li (bib14) 2019; 10 Abdi, Beigvand, Scala (bib19) 2017; 71 bib27 Matpower (bib29) Tian, Lu, Zhang, Tan, Jin (bib6) 2020 Yin, Wang, Wang, Zheng (bib3) 2019; 239 Fliscounakis, Panciatici, Capitanescu, Wehenkel (bib28) 2013; 28 Zhou, Ai (bib16) 2019; 112 Nguyen, Narikiyo, Kawanishi (bib13) 2018; 9 Mazhari, Kouhsari, Ramirez (bib22) 2017; 143 bib26 Fu, Liu, Li (bib4) 2016; 7 Garca-Villalobos, Zamora, KnezoviA, Marinelli (bib10) 2016; 180 Grecu, Aceleanu, Albulescu (bib11) 2018; 93 Sun, Hahn, Liu (bib21) 2018; 99 Tang, Dvijotham, Low (bib18) 2017; 8 Verma, Mohammed, Mangal, Manik (bib30) 2017; 129 Salehisadaghiani, Shi, Pavel (bib12) 2019; 103 Wang, He, Zhu (bib1) 2020; 59 Wang, Chang, Meng, Wang (bib20) 2018; 229 Zhang, Chen, Yu, Yang, Qu, Mao (bib25) 2017; 189 Sun (10.1016/j.energy.2020.119245_bib21) 2018; 99 Wang (10.1016/j.energy.2020.119245_bib20) 2018; 229 Yin (10.1016/j.energy.2020.119245_bib3) 2019; 239 Qu (10.1016/j.energy.2020.119245_bib15) 2018; 149 Salehisadaghiani (10.1016/j.energy.2020.119245_bib12) 2019; 103 Zhou (10.1016/j.energy.2020.119245_bib16) 2019; 112 Lu (10.1016/j.energy.2020.119245_bib14) 2019; 10 Tang (10.1016/j.energy.2020.119245_bib18) 2017; 8 Zhang (10.1016/j.energy.2020.119245_bib25) 2017; 189 Fliscounakis (10.1016/j.energy.2020.119245_bib28) 2013; 28 Abdi (10.1016/j.energy.2020.119245_bib19) 2017; 71 Verma (10.1016/j.energy.2020.119245_bib30) 2017; 129 Mazhari (10.1016/j.energy.2020.119245_bib22) 2017; 143 Nguyen (10.1016/j.energy.2020.119245_bib13) 2018; 9 Tian (10.1016/j.energy.2020.119245_bib6) 2020 Fu (10.1016/j.energy.2020.119245_bib4) 2016; 7 Tran (10.1016/j.energy.2020.119245_bib23) 2018; 174 Wang (10.1016/j.energy.2020.119245_bib1) 2020; 59 Tang (10.1016/j.energy.2020.119245_bib2) 2019; 182 Altan (10.1016/j.energy.2020.119245_bib9) 2019; 126 Karasu (10.1016/j.energy.2020.119245_bib7) 2019 Zhang (10.1016/j.energy.2020.119245_bib24) 2015; 106 Zhang (10.1016/j.energy.2020.119245_bib8) 2018; 226 Bigi (10.1016/j.energy.2020.119245_bib17) 2017; 66 Ili (10.1016/j.energy.2020.119245_bib5) 2020; 22 Garca-Villalobos (10.1016/j.energy.2020.119245_bib10) 2016; 180 Grecu (10.1016/j.energy.2020.119245_bib11) 2018; 93 Matpower (10.1016/j.energy.2020.119245_bib29) Huo (10.1016/j.energy.2020.119245_bib31) 2018; 95 |
| References_xml | – start-page: 8 year: 2019 end-page: 11 ident: bib7 article-title: Recognition model for solar radiation time series based on random forest with feature selection approach publication-title: 2019 11th international conference on electrical and electronics engineering (ELECO), IEEE, IEEE, bursa, Turkey, Turkey – volume: 126 start-page: 325 year: 2019 end-page: 336 ident: bib9 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques, Chaos publication-title: Solitons & Fractals – volume: 180 start-page: 155 year: 2016 end-page: 168 ident: bib10 article-title: Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks publication-title: Appl Energy – volume: 71 start-page: 742 year: 2017 end-page: 766 ident: bib19 article-title: A review of optimal power flow studies applied to smart grids and microgrids publication-title: Renew Sustain Energy Rev – volume: 189 start-page: 157 year: 2017 end-page: 176 ident: bib25 article-title: Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems publication-title: Appl Energy – ident: bib26 article-title: case 118 – volume: 229 start-page: 945 year: 2018 end-page: 962 ident: bib20 article-title: Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems publication-title: Appl Energy – volume: 129 start-page: 148 year: 2017 end-page: 157 ident: bib30 article-title: Minimization of energy consumption in multi-stage evaporator system of kraft recovery process using interior-point method publication-title: Energy – volume: 59 start-page: 1202 year: 2020 end-page: 1217 ident: bib1 article-title: Energy and production efficiency optimization of an ethylene plant considering process operation and structure publication-title: Ind Eng Chem Res – volume: 182 start-page: 37 year: 2019 end-page: 47 ident: bib2 article-title: The multi-objective optimization of combustion system operations based on deep data-driven models publication-title: Energy – volume: 22 start-page: 100331 year: 2020 ident: bib5 article-title: Centralized radial feeder protection in electric power distribution using artificial neural networks publication-title: Sustainable Energy, Grids and Networks – volume: 106 start-page: 543 year: 2015 end-page: 556 ident: bib24 article-title: Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems publication-title: Energy Convers Manag – volume: 9 start-page: 4964 year: 2018 end-page: 4974 ident: bib13 article-title: Optimal demand response and real-time pricing by a sequential distributed consensus-based admm approach publication-title: IEEE Transactions on Smart Grid – ident: bib27 article-title: case 300 – volume: 95 start-page: 36 year: 2018 end-page: 46 ident: bib31 article-title: Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach publication-title: Int J Electr Power Energy Syst – volume: 7 start-page: 139 year: 2016 end-page: 149 ident: bib4 article-title: Multiobjective stochastic economic dispatch with variable wind generation using scenario-based decomposition and asynchronous block iteration publication-title: IEEE Transactions on Sustainable Energy – ident: bib29 article-title: case1354pegase – start-page: 1 year: 2020 end-page: 14 ident: bib6 article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks publication-title: IEEE Transactions on Cybernetics – volume: 149 start-page: 779 year: 2018 end-page: 791 ident: bib15 article-title: Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market publication-title: Energy – volume: 226 start-page: 743 year: 2018 end-page: 755 ident: bib8 article-title: Multi-objective distributed generation planning in distribution network considering correlations among uncertainties publication-title: Appl Energy – volume: 112 start-page: 109 year: 2019 end-page: 126 ident: bib16 article-title: Distributed economic and environmental dispatch in two kinds of cchp microgrid clusters publication-title: Int J Electr Power Energy Syst – volume: 103 start-page: 27 year: 2019 end-page: 35 ident: bib12 article-title: Distributed nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers publication-title: Automatica – volume: 8 start-page: 2963 year: 2017 end-page: 2973 ident: bib18 article-title: Real-time optimal power flow publication-title: IEEE Transactions on Smart Grid – volume: 10 start-page: 6320 year: 2019 end-page: 6331 ident: bib14 article-title: Incremental-oriented ADMM for distributed optimal power flow with discrete variables in distribution networks publication-title: IEEE Transactions on Smart Grid – volume: 66 start-page: 1955 year: 2017 end-page: 1972 ident: bib17 article-title: Auxiliary problem principles for equilibria publication-title: Optimization – volume: 28 start-page: 4909 year: 2013 end-page: 4917 ident: bib28 article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions publication-title: IEEE Trans Power Syst – volume: 174 start-page: 475 year: 2018 end-page: 488 ident: bib23 article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory publication-title: Energy Convers Manag – volume: 239 start-page: 1066 year: 2019 end-page: 1076 ident: bib3 article-title: Interchange objective value method for distributed multi-objective optimization: theory, application, implementation publication-title: Appl Energy – volume: 143 start-page: 669 year: 2017 end-page: 681 ident: bib22 article-title: A novel frequency-domain approach for distributed harmonic analysis of multi-area interconnected power systems publication-title: Elec Power Syst Res – volume: 99 start-page: 45 year: 2018 end-page: 56 ident: bib21 article-title: Cyber security of a power grid: state-of-the-art publication-title: Int J Electr Power Energy Syst – volume: 93 start-page: 691 year: 2018 end-page: 700 ident: bib11 article-title: The economic, social and environmental impact of shale gas exploitation in Romania: a cost-benefit analysis publication-title: Renew Sustain Energy Rev – volume: 126 start-page: 325 year: 2019 ident: 10.1016/j.energy.2020.119245_bib9 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques, Chaos publication-title: Solitons & Fractals doi: 10.1016/j.chaos.2019.07.011 – volume: 149 start-page: 779 year: 2018 ident: 10.1016/j.energy.2020.119245_bib15 article-title: Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market publication-title: Energy doi: 10.1016/j.energy.2018.02.083 – volume: 129 start-page: 148 year: 2017 ident: 10.1016/j.energy.2020.119245_bib30 article-title: Minimization of energy consumption in multi-stage evaporator system of kraft recovery process using interior-point method publication-title: Energy doi: 10.1016/j.energy.2017.04.093 – volume: 106 start-page: 543 year: 2015 ident: 10.1016/j.energy.2020.119245_bib24 article-title: Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.049 – volume: 182 start-page: 37 year: 2019 ident: 10.1016/j.energy.2020.119245_bib2 article-title: The multi-objective optimization of combustion system operations based on deep data-driven models publication-title: Energy doi: 10.1016/j.energy.2019.06.051 – start-page: 1 year: 2020 ident: 10.1016/j.energy.2020.119245_bib6 article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks publication-title: IEEE Transactions on Cybernetics – volume: 9 start-page: 4964 issue: 5 year: 2018 ident: 10.1016/j.energy.2020.119245_bib13 article-title: Optimal demand response and real-time pricing by a sequential distributed consensus-based admm approach publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2676179 – volume: 22 start-page: 100331 year: 2020 ident: 10.1016/j.energy.2020.119245_bib5 article-title: Centralized radial feeder protection in electric power distribution using artificial neural networks publication-title: Sustainable Energy, Grids and Networks doi: 10.1016/j.segan.2020.100331 – volume: 239 start-page: 1066 year: 2019 ident: 10.1016/j.energy.2020.119245_bib3 article-title: Interchange objective value method for distributed multi-objective optimization: theory, application, implementation publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.149 – volume: 66 start-page: 1955 issue: 12 year: 2017 ident: 10.1016/j.energy.2020.119245_bib17 article-title: Auxiliary problem principles for equilibria publication-title: Optimization doi: 10.1080/02331934.2016.1227808 – volume: 28 start-page: 4909 issue: 4 year: 2013 ident: 10.1016/j.energy.2020.119245_bib28 article-title: Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2013.2251015 – volume: 226 start-page: 743 year: 2018 ident: 10.1016/j.energy.2020.119245_bib8 article-title: Multi-objective distributed generation planning in distribution network considering correlations among uncertainties publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.049 – volume: 10 start-page: 6320 issue: 6 year: 2019 ident: 10.1016/j.energy.2020.119245_bib14 article-title: Incremental-oriented ADMM for distributed optimal power flow with discrete variables in distribution networks publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2019.2902255 – volume: 7 start-page: 139 issue: 1 year: 2016 ident: 10.1016/j.energy.2020.119245_bib4 article-title: Multiobjective stochastic economic dispatch with variable wind generation using scenario-based decomposition and asynchronous block iteration publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2015.2478488 – volume: 112 start-page: 109 year: 2019 ident: 10.1016/j.energy.2020.119245_bib16 article-title: Distributed economic and environmental dispatch in two kinds of cchp microgrid clusters publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.04.045 – volume: 174 start-page: 475 year: 2018 ident: 10.1016/j.energy.2020.119245_bib23 article-title: Whole-day optimal operation of multiple combined heat and power systems by alternating direction method of multipliers and consensus theory publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.08.046 – start-page: 8 year: 2019 ident: 10.1016/j.energy.2020.119245_bib7 article-title: Recognition model for solar radiation time series based on random forest with feature selection approach – volume: 95 start-page: 36 year: 2018 ident: 10.1016/j.energy.2020.119245_bib31 article-title: Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2017.08.004 – volume: 59 start-page: 1202 issue: 3 year: 2020 ident: 10.1016/j.energy.2020.119245_bib1 article-title: Energy and production efficiency optimization of an ethylene plant considering process operation and structure publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b05315 – volume: 229 start-page: 945 year: 2018 ident: 10.1016/j.energy.2020.119245_bib20 article-title: Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.034 – volume: 93 start-page: 691 year: 2018 ident: 10.1016/j.energy.2020.119245_bib11 article-title: The economic, social and environmental impact of shale gas exploitation in Romania: a cost-benefit analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.05.026 – volume: 103 start-page: 27 year: 2019 ident: 10.1016/j.energy.2020.119245_bib12 article-title: Distributed nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers publication-title: Automatica doi: 10.1016/j.automatica.2019.01.012 – volume: 99 start-page: 45 year: 2018 ident: 10.1016/j.energy.2020.119245_bib21 article-title: Cyber security of a power grid: state-of-the-art publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2017.12.020 – volume: 189 start-page: 157 year: 2017 ident: 10.1016/j.energy.2020.119245_bib25 article-title: Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.080 – volume: 8 start-page: 2963 issue: 6 year: 2017 ident: 10.1016/j.energy.2020.119245_bib18 article-title: Real-time optimal power flow publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2704922 – volume: 71 start-page: 742 year: 2017 ident: 10.1016/j.energy.2020.119245_bib19 article-title: A review of optimal power flow studies applied to smart grids and microgrids publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.12.102 – volume: 143 start-page: 669 year: 2017 ident: 10.1016/j.energy.2020.119245_bib22 article-title: A novel frequency-domain approach for distributed harmonic analysis of multi-area interconnected power systems publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2016.10.048 – volume: 180 start-page: 155 year: 2016 ident: 10.1016/j.energy.2020.119245_bib10 article-title: Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.110 – ident: 10.1016/j.energy.2020.119245_bib29 |
| SSID | ssj0005899 |
| Score | 2.4051886 |
| Snippet | The convergence speed of analytic distributed multi-objective optimization algorithms should be higher when solving distributed multi-objective optimization... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119245 |
| SubjectTerms | Adaptive algorithms Adaptive interchange objective value method Algorithms Computer simulation Distributed multi-objective optimization problems Electric power distribution energy Iterative methods Mathematical models Multiple objective analysis Optimal power flow Optimization Optimization algorithms Power flow Reinforcement Security |
| Title | Analytical adaptive distributed multi-objective optimization algorithm for optimal power flow problems |
| URI | https://dx.doi.org/10.1016/j.energy.2020.119245 https://www.proquest.com/docview/2489024107 https://www.proquest.com/docview/2574383107 |
| Volume | 216 |
| WOSCitedRecordID | wos000603310100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLegQ4ILgsHEYCAjIS6RUep8ODkO1AlQVThkqJwsJ7FHqzYJTQf983n-SLIN0MaBS1QlL43b388vz8_vA6FXKpFJAXYwYVLCAgUWHEQUipJUURWXqRLMZPF_mbLZLJnP08-u22hr2gmwqkp2u7T5r1DDOQBbp87-A9z9l8IJ-AygwxFgh-ONgDdlRqyHWpSiMaFBpS6PqztbgXlpQghJnS-tqvNqEFm7bExPrM7qzWL7bW3CD80lnaqlW6l5alX_9FwDmvaSR9_mD-rCpTsbK997F77aEgVTHfO1GJz3VsFkoh781tKeeyvqtSsG7nwRdNyFL6shB8snURhe0q90HHsNqGZY6UXkj1rbOhCWb6QZLizaqe_kh7dUtzM_-8RPTqdTnk3m2evmO9H9w_Q-u2umchvtURalyQjtHX-YzD8O4T6J6SXaj7BLozSxfr8_-G9mypUXtrFCsgfovls-4GML-0N0S1b76G6XXd7uo4PJkLkIgk51t4-QGniBO17gC7zAV3iBL_IC97zAADB2vMCGF1jzAne8eIxOTybZu_fENdkgRRCzLQnyMpQ0USFMVpoKpvf8o0gxpjuyCEmLUFfwT_MyB9NaRIzCCpeVNFdhJEUSxMEBGlV1JZ8gXDAK9n-eCqH8UMR-UpapHOeqHIc5PIEdoqD7T3nhKtDrRigr3oUaLrlFgmskuEXiEJH-rsZWYLlGnnVwcWdFWuuQA92uufOoQ5e7Cd1y-L0p2LFjH4b_sr8MOlhvrIlK1ucgEzFd8Rdknt5A5hm6N8ydIzTabs7lc3Sn-LFdtJsXjre_APyJrQM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+adaptive+distributed+multi-objective+optimization+algorithm+for+optimal+power+flow+problems&rft.jtitle=Energy+%28Oxford%29&rft.au=Yin%2C+Linfei&rft.au=Wang%2C+Tao&rft.au=Zheng%2C+Baomin&rft.date=2021-02-01&rft.issn=0360-5442&rft.volume=216+p.119245-&rft_id=info:doi/10.1016%2Fj.energy.2020.119245&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |