A finite element based heterogeneous multiscale method for the Landau-Lifshitz equation
We present a Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, a simple model for a ferromagnetic composite. A finite element macro scheme is combined with a finite difference micro model to approximate the effective equation correspond...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 486; s. 112112 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.08.2023
|
| Predmet: | |
| ISSN: | 0021-9991, 1090-2716, 1090-2716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, a simple model for a ferromagnetic composite. A finite element macro scheme is combined with a finite difference micro model to approximate the effective equation corresponding to the original problem. This makes it possible to obtain effective solutions to problems with rapid material variations on a small scale, described by ε≪1, which would be too expensive to resolve in a conventional simulation.
•Numerical homogenization using Heterogeneous Multiscale Methods.•Implementation of a new multiscale approach for the Landau-Lifshitz equation.•Finite element discretized macro model for flexibility.•Efficient finite difference micro model.•Makes it possible to treat arbitrarily small material variations. |
|---|---|
| ISSN: | 0021-9991 1090-2716 1090-2716 |
| DOI: | 10.1016/j.jcp.2023.112112 |