A faster algorithm for the resource allocation problem with convex cost functions

We revisit the classical resource allocation problem with general convex objective functions, subject to an integer knapsack constraint. This class of problems is fundamental in discrete optimization and arises in a wide variety of applications. In this paper, we propose a novel polynomial-time divi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of discrete algorithms (Amsterdam, Netherlands) Jg. 34; S. 137 - 146
Hauptverfasser: Shi, Cong, Zhang, Huanan, Qin, Chao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2015
Schlagworte:
ISSN:1570-8667, 1570-8675
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the classical resource allocation problem with general convex objective functions, subject to an integer knapsack constraint. This class of problems is fundamental in discrete optimization and arises in a wide variety of applications. In this paper, we propose a novel polynomial-time divide-and-conquer algorithm (called the multi-phase algorithm) and prove that it has a computational complexity of O(nlog⁡nlog⁡N), which outperforms the best known polynomial-time algorithm with O(n(log⁡N)2).
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2015.06.001