A faster algorithm for the resource allocation problem with convex cost functions

We revisit the classical resource allocation problem with general convex objective functions, subject to an integer knapsack constraint. This class of problems is fundamental in discrete optimization and arises in a wide variety of applications. In this paper, we propose a novel polynomial-time divi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 34; s. 137 - 146
Hlavní autoři: Shi, Cong, Zhang, Huanan, Qin, Chao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2015
Témata:
ISSN:1570-8667, 1570-8675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We revisit the classical resource allocation problem with general convex objective functions, subject to an integer knapsack constraint. This class of problems is fundamental in discrete optimization and arises in a wide variety of applications. In this paper, we propose a novel polynomial-time divide-and-conquer algorithm (called the multi-phase algorithm) and prove that it has a computational complexity of O(nlog⁡nlog⁡N), which outperforms the best known polynomial-time algorithm with O(n(log⁡N)2).
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2015.06.001