MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder
Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitiga...
Uloženo v:
| Vydáno v: | Computer methods in biomechanics and biomedical engineering Ročník 28; číslo 7; s. 1098 - 1110 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Taylor & Francis
19.05.2025
|
| Témata: | |
| ISSN: | 1025-5842, 1476-8259, 1476-8259 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research. |
|---|---|
| AbstractList | Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research. Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research.Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research. |
| Author | Deng, Zengqian Xu, Jie Feng, Yinfei Zhang, Yuanyuan Dong, Liangcheng |
| Author_xml | – sequence: 1 givenname: Zengqian surname: Deng fullname: Deng, Zengqian organization: School of Information and Control Engineering, Qingdao University of Technology – sequence: 2 givenname: Jie surname: Xu fullname: Xu, Jie organization: School of Information Science and Engineering, Qufu Normal University – sequence: 3 givenname: Yinfei surname: Feng fullname: Feng, Yinfei organization: School of Information and Control Engineering, Qingdao University of Technology – sequence: 4 givenname: Liangcheng surname: Dong fullname: Dong, Liangcheng organization: School of Information and Control Engineering, Qingdao University of Technology – sequence: 5 givenname: Yuanyuan surname: Zhang fullname: Zhang, Yuanyuan organization: School of Information and Control Engineering, Qingdao University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38314513$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU2PEyEch4lZ4-5WP4KGo5epvAyU0YvNZl1N1nhRr4ThpaIDVGDW9NvL2PbiQS9AyPP7Ef7PNbiIKVoAnmO0xkigVxgRxkRP1gSRfk0oxhSzR-AK9xveCcKGi3ZuTLdAl-C6lO8IIYFF_wRcUkFxzzC9Ag8ft1_vtrevoYJhnqoPyagJuqyC_ZXyD-hShvtsjdfVxx1U5RCCrdlraPK865YF-lhtVg1IscBRFWtgivBBZa-Wu9a3y2r_Daq5Jht1MjY_BY-dmop9dtpX4Mu7288377v7T3cfbrb3naac185Ra0YulOO9xmrkw8g0xZZsNDcDw0wLy2m_YXxwo-F8JIPlm1EwrPmAuXN0BV4ee_c5_ZxtqTL4ou00qWjTXCQZCOkZQW0WK_DihM5jsEbusw8qH-R5Vg14cwR0TqVk66T29c8Pa1Z-khjJxYw8m5GLGXky09Lsr_T5gf_l3h5zPjYXQTUrk5FVHaaUm6aofZH03xW_AZWSpcw |
| CitedBy_id | crossref_primary_10_1109_TCBBIO_2024_3502507 crossref_primary_10_3389_fphar_2025_1632775 crossref_primary_10_1038_s41746_025_01565_7 |
| Cites_doi | 10.1038/s41467-017-01929-y 10.1093/bioinformatics/btaa501 10.1073/pnas.1803294115 10.1093/bib/bbz087 10.1145/3357384.3358023 10.1093/bioinformatics/btx659 10.1021/acs.nanolett.1c01044 10.1145/3511808.3557648 10.3892/or.12.3.557 10.3389/fphar.2018.00197 10.1093/bib/bbac151 10.1186/s12859-023-05387-w 10.1109/TCBB.2020.2988018 10.1016/j.jep.2012.01.058 10.1021/acs.jcim.3c00582 10.1093/jac/dky183 10.3390/ijms21145014 10.1093/bib/bbab159 10.1158/1538-7445.AM2017-4100 10.1093/nar/gkx1037 10.1109/WACV45572.2020.9093380 10.7554/eLife.68876 10.1371/journal.pone.0273764 10.1016/j.ymeth.2019.02.009 10.1007/s13721-019-0215-3 10.1126/scitranslmed.3003377 10.1198/004017002317375064 10.1136/amiajnl-2011-000699 10.1371/journal.pcbi.1002998 |
| ContentType | Journal Article |
| Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
| Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1080/10255842.2024.2311315 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1476-8259 |
| EndPage | 1110 |
| ExternalDocumentID | 38314513 10_1080_10255842_2024_2311315 2311315 |
| Genre | Method Journal Article |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 61902430 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2023MF053 |
| GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 1TA ACTTO ADUMR ADYSH AFBWG AFION AGVKY AGWUF ALRRR BWMZZ CAG CGR COF CUY CVF CYRSC DAOYK ECM EIF EJD NPM OPCYK 7X8 |
| ID | FETCH-LOGICAL-c366t-f3edb68af64c1ab69b5c31e27c6d9515c8e6347569fbd66b29e67b851c6916ff3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001158086600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1025-5842 1476-8259 |
| IngestDate | Sun Nov 09 11:34:31 EST 2025 Mon Jul 21 05:56:46 EDT 2025 Sat Nov 29 07:43:36 EST 2025 Tue Nov 18 21:49:02 EST 2025 Mon Oct 20 23:45:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | multimodal asymmetric drug-drug interaction Artificial intelligence variational autoencoder |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-f3edb68af64c1ab69b5c31e27c6d9515c8e6347569fbd66b29e67b851c6916ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 38314513 |
| PQID | 2922452051 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_10255842_2024_2311315 proquest_miscellaneous_2922452051 pubmed_primary_38314513 crossref_citationtrail_10_1080_10255842_2024_2311315 crossref_primary_10_1080_10255842_2024_2311315 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-19 |
| PublicationDateYYYYMMDD | 2025-05-19 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Computer methods in biomechanics and biomedical engineering |
| PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_3_30_1 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 Razek A (e_1_3_3_19_1) 1974; 34 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_32_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 Kalafut NC (e_1_3_3_11_1) 2023; 5 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 Rodziewicz TL (e_1_3_3_21_1) 2020 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_27_1 doi: 10.1038/s41467-017-01929-y – ident: e_1_3_3_6_1 doi: 10.1093/bioinformatics/btaa501 – ident: e_1_3_3_23_1 doi: 10.1073/pnas.1803294115 – ident: e_1_3_3_32_1 doi: 10.1093/bib/bbz087 – volume-title: StatPearls year: 2020 ident: e_1_3_3_21_1 – ident: e_1_3_3_24_1 doi: 10.1145/3357384.3358023 – ident: e_1_3_3_35_1 doi: 10.1093/bioinformatics/btx659 – ident: e_1_3_3_5_1 doi: 10.1021/acs.nanolett.1c01044 – ident: e_1_3_3_36_1 doi: 10.1145/3511808.3557648 – volume: 34 start-page: 1857 issue: 8 year: 1974 ident: e_1_3_3_19_1 article-title: Optimum time sequence for the administration of vincristine and cyclophosphamide in vivo publication-title: Cancer Res – ident: e_1_3_3_13_1 – ident: e_1_3_3_15_1 doi: 10.3892/or.12.3.557 – ident: e_1_3_3_18_1 doi: 10.3389/fphar.2018.00197 – ident: e_1_3_3_7_1 doi: 10.1093/bib/bbac151 – ident: e_1_3_3_34_1 doi: 10.1186/s12859-023-05387-w – ident: e_1_3_3_29_1 doi: 10.1109/TCBB.2020.2988018 – ident: e_1_3_3_31_1 doi: 10.1016/j.jep.2012.01.058 – ident: e_1_3_3_33_1 doi: 10.1021/acs.jcim.3c00582 – ident: e_1_3_3_16_1 doi: 10.1093/jac/dky183 – ident: e_1_3_3_30_1 doi: 10.3390/ijms21145014 – volume: 5 start-page: 1 issue: 6 year: 2023 ident: e_1_3_3_11_1 article-title: Joint variational autoencoders for multimodal imputation and embedding publication-title: Nat Mach Intell – ident: e_1_3_3_20_1 – ident: e_1_3_3_9_1 doi: 10.1093/bib/bbab159 – ident: e_1_3_3_2_1 doi: 10.1158/1538-7445.AM2017-4100 – ident: e_1_3_3_28_1 doi: 10.1093/nar/gkx1037 – ident: e_1_3_3_4_1 doi: 10.1109/WACV45572.2020.9093380 – ident: e_1_3_3_3_1 doi: 10.7554/eLife.68876 – ident: e_1_3_3_12_1 doi: 10.1371/journal.pone.0273764 – ident: e_1_3_3_25_1 doi: 10.1016/j.ymeth.2019.02.009 – ident: e_1_3_3_22_1 doi: 10.1007/s13721-019-0215-3 – ident: e_1_3_3_26_1 doi: 10.1126/scitranslmed.3003377 – ident: e_1_3_3_8_1 doi: 10.1198/004017002317375064 – ident: e_1_3_3_14_1 – ident: e_1_3_3_17_1 doi: 10.1136/amiajnl-2011-000699 – ident: e_1_3_3_10_1 doi: 10.1371/journal.pcbi.1002998 |
| SSID | ssj0008184 |
| Score | 2.4303489 |
| Snippet | Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1098 |
| SubjectTerms | Algorithms Artificial intelligence asymmetric drug-drug interaction Autoencoder Drug Interactions multimodal variational autoencoder |
| Title | MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2024.2311315 https://www.ncbi.nlm.nih.gov/pubmed/38314513 https://www.proquest.com/docview/2922452051 |
| Volume | 28 |
| WOSCitedRecordID | wos001158086600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1476-8259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008184 issn: 1025-5842 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpSKGX5tHXNg8U6NVLLcmy1NsSssklIYck3ZuQ9SiBrB1s70L-fTWyvXQPyx6ai43BY8vyjGakGX0fQj8KpgHHMktyl5qEaeYSTYRJDMsA_k4YbU0km8hvb8VsJu_6asKmL6uEObTvgCLiWA3GrYtmqIgL5xAHCwbbqAgbhwAlpXGbeXD9YJr309-rsTi4o5hXBtJWEBn28Gx6ypp3WsMu3RyBRk803X-DbzhAH_swFE86vTlEO648Qu87YsrXT2h5M3m8mlz-whrHisN5ZcPdfijkwqHB-KWGHA9UTWPdvM7nQM1lsK0XfxI4YACiqLttEw0GZ2lxVeJlmJv36484gmVjvWgrQNO0rv6MHqaX9xfXSc_QkBjKeZt46mzBhfacmVQXXBaZoakjueE2hG6ZEY5Tlmdc-sJyXhDpeF6EIM_wEJZ6T7-g3bIq3TeEw1UWnGkqXAQMIlpT4qUm1JKfOpd6hNjwZ5Tp4cuBReNZpT3K6dClCrpU9V06QuOV2EuH37FNQP7721UbF058x3Ki6BbZ80FHVLBSSL3o0lWLRhFJIMUdRsAR-topz6o5VFCgS6bf_-PNx-gDAR0HWFl5gnbbeuFO0Z5Ztk9NfYbe5TNxFi3jL27ZB00 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELZWXdByWR77oMvLSHtNRWzHifdWrSisgJ4K9GY5fqCVtglK00r8-_U4SUUPiANcEkXKJI4z9ow9M9-H0M-cKcCxTKLUxjpiitlIkUxHmiUAf5dpZXQgm0jH42w6Fc9rYSCtEtbQrgGKCHM1DG7YjO5S4vzZO8IZgzoqwgbeQ4kp1Jl_TLytBfz8yeh-NRt7gxQiy0DbCjJdFc9Lj1mzT2vopS_7oMEWjbbf4yt20OfWE8XDRnV20Qdb7KHNhpvy6Qta3gzvLobnv7DCIelwVhp_t-tyubBvMX6sIMwDidNYzZ9mM2Dn0thUi4cIDhiwKKqmcmKOwV4aXBZ46Zfn7RYkDnjZWC3qEgA1ja2-otvR-eT3ZdSSNESacl5HjlqT80w5znSsci7yRNPYklRz4723RGeWU5YmXLjccJ4TYXmaez9Pc--ZOke_oV5RFnYfYX-VeHsaZzZgBhGlKHFCEWrImUqF6iPW_RqpWwRzINL4J-MW6LTrUgldKtsu7aPBSuyxgfB4TUA8_--yDnsnriE6kfQV2dNOSaQfqBB9UYUtF3NJBIEot58E--h7oz2r5tCMAmMy_fGGN5-gT5eTm2t5_Wd8dYC2CCg8oMyKQ9Srq4U9Qht6Wf-dV8dhgPwH50oKjw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQtBWXUmihWygYiWsQsR0n7m0FbEEtKw6UcrMcfyAkNlkl2ZX493icZAUHxAEuiSJlEscZe8aemfcQOsiZAhzLJEptrCOmmI0UyXSkWQLwd5lWRgeyiXQ8zm5uxGWXTVh3aZWwhnYtUESYq2FwT43rM-L82fvBGYMyKsIOvYMSUygzX_GuMwclvxr9X0zG3h6FwDKwtoJMX8Tz0mOemadn4KUvu6DBFI3W3uEjvqDPnR-Kh63irKMlW2ygjy0z5cNXNL8YXv8env7CCoeUw0lp_N2uz-TCvsF4WkGQB9KmsaofJhPg5tLYVLPbCA4YkCiqtm6ixmAtDS4LPPeL824DEge0bKxmTQlwmsZW39C_0enV8VnUUTREmnLeRI5ak_NMOc50rHIu8kTT2JJUc-N9t0RnllOWJly43HCeE2F5mnsvT3PvlzpHN9FyURb2O8L-KvHWNM5sQAwiSlHihCLUkCOVCjVArP8zUnf45UCjcS_jDua071IJXSq7Lh2gw4XYtAXweE1APP3tsgk7J66lOZH0Fdn9XkekH6YQe1GFLWe1JIJAjNtPgQO01SrPojk0o8CXTH-84c176NPlyUj-PR__2UarBNQdIGbFDlpuqpn9iT7oeXNXV7theDwCsrEJQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAVGAE%3A+a+multimodal+framework+for+predicting+asymmetric+drug-drug+interactions+based+on+variational+graph+autoencoder&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Deng%2C+Zengqian&rft.au=Xu%2C+Jie&rft.au=Feng%2C+Yinfei&rft.au=Dong%2C+Liangcheng&rft.date=2025-05-19&rft.pub=Taylor+%26+Francis&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=28&rft.issue=7&rft.spage=1098&rft.epage=1110&rft_id=info:doi/10.1080%2F10255842.2024.2311315&rft.externalDocID=2311315 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |