MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder
Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitiga...
Uloženo v:
| Vydáno v: | Computer methods in biomechanics and biomedical engineering Ročník 28; číslo 7; s. 1098 - 1110 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Taylor & Francis
19.05.2025
|
| Témata: | |
| ISSN: | 1025-5842, 1476-8259, 1476-8259 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees as a result of their concurrent or sequential usage. The accurate identification of potential drug interactions plays a pivotal role in mitigating the risks associated with drug administration in patients, it also helps in minimizing the likelihood of hazardous situations arising during a patient's course of treatment. However, researchers have found that there is a problem of asymmetric drug interactions, where one drug may affect another but not vice versa. This adds to the difficulty of prediction, so in polypharmacy, the order of drug administration is critical to efficacy and safety, and few current studies predict asymmetric DDIs. Aiming at the above problems, we propose a framework based on multimodal data and a variational graph autoencoder named MAVGAE for predicting asymmetric drug interactions. The framework initially encodes multimodal data into low-dimensional representations and then utilizes a variational graph autoencoder for encoding and decoding. During the model training process, supervised learning is employed for the classification task with the incorporation of heterogeneity information, ensuring accurate prediction of drug interactions. Experimental validation on a large-scale drug dataset demonstrates the framework's high accuracy and reliability in predicting non-symmetrical drug interactions, offering effective support and guidance for drug research. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1025-5842 1476-8259 1476-8259 |
| DOI: | 10.1080/10255842.2024.2311315 |