Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems
Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended...
Uložené v:
| Vydané v: | Applied soft computing Ročník 87; s. 105991 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.02.2020
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended for multi-objective problems (MOSM), and then five configurations of it by combination of different search strategies are proposed to solve the EEG signal analysis problem which is a member of the big data optimization problems class. Experimental results demonstrate that the proposed configurations of MOSM are efficient in this kind of problems. The configurations are also compared with NSGA-III with uniform crossover and adaptive mutation operators (NSGA-III UCAM), which is a recently proposed method for Big-Opt problems.
•Search Manager hybridization method extended to multi-objective optimization problems (MOSM).•Five configurations of the MOSM are proposed for Big Data optimization problems.•The proposed algorithms are compared with each other.•The results of proposed algorithms are compared with the results of NSGA-III UCAM.•MOSM is effective in optimizing Big Data optimization problems. |
|---|---|
| AbstractList | Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search Manager (SM), a recently proposed framework for hybridizing metaheuristics to improve the performance of optimization algorithms, is extended for multi-objective problems (MOSM), and then five configurations of it by combination of different search strategies are proposed to solve the EEG signal analysis problem which is a member of the big data optimization problems class. Experimental results demonstrate that the proposed configurations of MOSM are efficient in this kind of problems. The configurations are also compared with NSGA-III with uniform crossover and adaptive mutation operators (NSGA-III UCAM), which is a recently proposed method for Big-Opt problems.
•Search Manager hybridization method extended to multi-objective optimization problems (MOSM).•Five configurations of the MOSM are proposed for Big Data optimization problems.•The proposed algorithms are compared with each other.•The results of proposed algorithms are compared with the results of NSGA-III UCAM.•MOSM is effective in optimizing Big Data optimization problems. |
| ArticleNumber | 105991 |
| Author | Abdi, Yousef Feizi-Derakhshi, Mohammad-Reza |
| Author_xml | – sequence: 1 givenname: Yousef orcidid: 0000-0002-8517-8769 surname: Abdi fullname: Abdi, Yousef email: y.abdi@tabrizu.ac.ir – sequence: 2 givenname: Mohammad-Reza surname: Feizi-Derakhshi fullname: Feizi-Derakhshi, Mohammad-Reza |
| BookMark | eNp9kMFOAjEQhhuDiYC-gKe-wGK7sN028WKIignGg3puutNZKO5uSVsw-PQu4smDp_kzyfdn5huRQec7JOSaswlnXNxsJiZ6mOSMq35RKMXPyJDLMs-UkHzQ50LIbKZm4oKMYtywHlK5HJKwOFTBWdrumuQyX20Qktsjxb1vdsn5zoQDNc3KB5fWLa1MREt9R1_RBFjTZ9OZFQZaB9Pipw8ftPaBVm5FrUmG-m1yrfsyxyK6Db5qsI2X5Lw2TcSr3zkm7w_3b_NFtnx5fJrfLTOYCpEyC7KUtShtXhpTIkoGbIZQzmpWMKgsiLzitcUaJPRBKmBKFqIytkApQU3HRJ56IfgYA9YaXPo5JQXjGs2ZPrrTG310p4_u9Mldj-Z_0G1wba_if-j2BGH_1N5h0BEcdoDWhd6qtt79h38DTaqO0A |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106411 crossref_primary_10_1038_s41598_024_52083_7 crossref_primary_10_1007_s41870_025_02607_9 crossref_primary_10_1186_s12859_020_03644_w crossref_primary_10_1016_j_compbiomed_2023_107727 crossref_primary_10_1007_s11063_022_10850_5 crossref_primary_10_1016_j_asoc_2023_110232 crossref_primary_10_1016_j_compbiomed_2021_104896 crossref_primary_10_4018_IJCAC_2022010101 crossref_primary_10_1016_j_ress_2025_111658 crossref_primary_10_1109_TCYB_2022_3178929 crossref_primary_10_1016_j_engappai_2023_107000 crossref_primary_10_3233_JIFS_202785 crossref_primary_10_1007_s10586_023_04214_4 crossref_primary_10_1016_j_asoc_2022_109333 crossref_primary_10_1145_3470971 crossref_primary_10_1016_j_scs_2021_102960 crossref_primary_10_1016_j_swevo_2024_101493 crossref_primary_10_1007_s11227_023_05218_y crossref_primary_10_3390_math12020175 crossref_primary_10_1016_j_eswa_2025_127644 crossref_primary_10_1016_j_swevo_2025_102061 crossref_primary_10_1109_TCYB_2020_3041325 crossref_primary_10_1007_s40747_024_01489_x crossref_primary_10_1016_j_susoc_2025_05_003 crossref_primary_10_1016_j_jare_2024_09_019 crossref_primary_10_1016_j_asoc_2022_108791 crossref_primary_10_1016_j_techfore_2021_121193 crossref_primary_10_1016_j_asoc_2025_113930 crossref_primary_10_1016_j_swevo_2024_101628 crossref_primary_10_1109_TEVC_2023_3319640 crossref_primary_10_1016_j_asoc_2023_110525 crossref_primary_10_1016_j_asoc_2021_108297 crossref_primary_10_1016_j_ecmx_2025_101014 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_3233_IDT_220114 |
| Cites_doi | 10.1186/s12859-019-2754-0 10.1016/j.measurement.2017.09.022 10.1007/s00500-016-2474-6 10.1109/MSP.2014.2329397 10.1016/j.future.2018.06.008 10.1016/j.physa.2017.02.056 10.1016/j.asoc.2017.05.060 10.1016/j.eswa.2014.05.009 10.1016/j.asoc.2014.08.024 10.1007/s12293-015-0174-x 10.1109/TSG.2015.2468683 10.1016/j.advengsoft.2016.01.008 10.1016/j.ejor.2019.01.063 10.1038/s41598-019-45814-8 10.1016/j.advengsoft.2015.01.010 10.1016/j.eswa.2011.02.050 10.1007/s12293-016-0201-6 10.1016/j.ins.2016.01.046 10.1016/j.ins.2015.06.044 10.1016/j.asoc.2015.12.034 10.1016/j.biosystems.2017.07.010 10.1016/j.cie.2019.03.019 10.1016/j.ins.2018.10.005 10.1109/TEVC.2004.826071 10.1109/ICEC.1998.700159 10.1016/j.asoc.2016.12.022 10.1016/j.asoc.2017.06.029 10.1016/j.chemolab.2015.08.020 10.1016/j.asoc.2018.05.023 10.1049/el.2018.6506 10.1504/IJBIC.2015.069304 10.3390/sym9100203 10.1109/TEVC.2012.2185702 10.1016/j.ins.2008.02.017 10.1016/j.ab.2013.03.015 10.1007/11925231_28 10.3390/a10010018 10.1016/j.asoc.2017.10.032 10.1016/j.eswa.2013.05.052 10.1016/j.swevo.2015.06.002 10.1016/j.cie.2016.12.045 10.1109/4235.996017 10.1016/j.cor.2016.04.016 10.1016/j.future.2018.04.032 10.1016/j.ejor.2014.12.005 10.1016/j.knosys.2015.07.006 10.1016/j.asoc.2018.06.050 10.1016/j.eswa.2019.05.032 10.1016/j.swevo.2018.06.010 10.1016/j.asoc.2018.03.053 10.1016/j.asoc.2017.12.036 10.1007/978-3-319-50920-4_19 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2019.105991 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2019_105991 S1568494619307720 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c366t-dc878f67d27aa7ee80c04ec74f050cbdc62b1fdefc8cb1f89c09856bad5e88c93 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509341500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:03:05 EST 2025 Tue Nov 18 22:34:37 EST 2025 Fri Feb 23 02:45:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Evolutionary operators Hybrid multi-objective evolutionary algorithm Search Manager framework Big Data optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c366t-dc878f67d27aa7ee80c04ec74f050cbdc62b1fdefc8cb1f89c09856bad5e88c93 |
| ORCID | 0000-0002-8517-8769 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_105991 crossref_primary_10_1016_j_asoc_2019_105991 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105991 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Xu, Ding, Qu, Li (b30) 2018; 68 Abdi, Seyfari (b27) 2018; 9 Deb, Sindhya, Okabe (b55) 2007 Deb, Pratap, Agarwal, Meyarivan (b43) 2002; 6 Yi, Xing, Wang, Dong, Vasilakos, Alavi, Wang (b54) 2018; 509 Kang, Park, Ro, Jung (b19) 2018; 54 Peng, Liao, Cai (b36) 2015; 6 Mirjalili (b50) 2015 Yelghi, Köse (b9) 2018; 62 Mohapatra, Das, Roy (b18) 2017; 59 Hosseini, Al-Khaled (b10) 2014; 24 Raidl (b39) 2015; 244 Fausto, Cuevas, Valdivia, González (b47) 2017; 160 Patel, Savsani (b58) 2015; 324 Masoudi-Sobhanzadeh, Omidi, Amanlou, Masoudi-Nejad (b57) 2019; 9 Yi, Deb, Dong, Alavi, Wang (b34) 2018; 88 Zhang, Wang, Yang, Gen (b22) 2019; 130 Gen, Zhang, Line, Yun (b23) 2017; 112 Fonseca, Santos, Carrano (b40) 2016; 74 Xue, Cai, Cao, Cui, Li (b60) 2015; 7 Masoudi-Sobhanzadeh, Motieghader, Masoudi-Nejad (b11) 2019; 20 Mirjalili (b3) 2015; 83 Asrari, Lotfifard, Payam (b41) 2016; 7 Lopez-Rincon, Tonda, Elati, Schwander, Piwowarski, Gallinari (b16) 2018; 65 Coello, Lechuga (b42) 2002 Cevher, Becker, Schmidt (b2) 2014; 31 Elsayed, Sarker (b35) 2016; 8 . Goel, Singh, Aseri (b15) 2013; 438 Mirjalili (b59) 2015; 89 Bao, Xu, Goodman (b62) 2019; 134 Silva, Ricardo de Souza, Souza, Suza, Filho (b20) 2018; 71 Bernal, Castillo, Soria, Valdez (b61) 2017; 10 Lin, Chen, Zhan, Chen, Coello, Yin, Lin, Zhang (b29) 2016; 20 Połap, Woźniak (b45) 2017; 9 Sahoo, Chandra (b63) 2017; 52 Ghaemi, Feizi-Derakhshi (b46) 2014; 41 Wang, Tan, Liu (b52) 2018; 22 Sreekara Reddy, Ch. Ratnam, Rajyalakshmi, Manupati (b25) 2018; 114 Opara, Arabas (b8) 2019; 44 Rautray, Balabantaray (b14) 2017; 477 Mirjalili (b6) 2019 Pellerin, Perrier, Berthaut (b38) 2019; 280 Pei, J. (b44) 2017; vol. 10386 Kaushal, Baljit, Akashdeep (b12) 2018; 70 Zelinka (b5) 2015; 25 Hiziroglu (b13) 2013; 40 Tavakkoli-Moghaddam, Azarkish, Sadeghnejad-Barkousaraie (b31) 2011; 38 Chakraborty, Kar (b4) 2017 L.V. Santana-Quintero, N. Ramirez, C.A.C. Coello, A multiobjective particle swarm optimizer hybridized with scatter search, in: 5th Mexican International Conference on Artificial Intelligence, LNCS 4293, 2006, pp. 294–304. El Majdouli, Rbouh, Bougrine, El Benani, El Imrani (b37) 2016; 8 Zhu, Lin, Du, Liang, Wang, Zhu, Chen, Huang, Ming (b26) 2016 Jayabarathi, Raghunathan, Gandomi (b49) 2018; vol. 744 Tang, Wang (b28) 2013; 17 Wissem, Sabeur, Haithem, Mondher, Engelbert (b1) 2018; 86 Wang, Wangc, Cuid, Suna, Zhaoa, Wanga, Xuee (b33) 2017; 69 Marini, Walczak (b7) 2015; 149 Binol, Guvenc, Bulut, Akkaya (b21) 2018; 54 Mirjalili, Lewis (b56) 2016; 95 Ratnaweera, Halgamuge (b53) 2004; 83 Ál. Rubio-Largo, Vega-Rodríguez, González-Álvarez (b24) 2016; 41 S. Tsutsui, A. Ghosh, A study on the effect of multi-parent recombination in real coded genetic algorithms, in: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 1998. Goh, Tan, Al-Mamun, Abbass (b48) 2015 Yang, Tang, Yao (b17) 2008; 178 Kaushal (10.1016/j.asoc.2019.105991_b12) 2018; 70 Chakraborty (10.1016/j.asoc.2019.105991_b4) 2017 Abdi (10.1016/j.asoc.2019.105991_b27) 2018; 9 Coello (10.1016/j.asoc.2019.105991_b42) 2002 Mirjalili (10.1016/j.asoc.2019.105991_b59) 2015; 89 Yi (10.1016/j.asoc.2019.105991_b54) 2018; 509 Lopez-Rincon (10.1016/j.asoc.2019.105991_b16) 2018; 65 Masoudi-Sobhanzadeh (10.1016/j.asoc.2019.105991_b11) 2019; 20 Mirjalili (10.1016/j.asoc.2019.105991_b56) 2016; 95 Fonseca (10.1016/j.asoc.2019.105991_b40) 2016; 74 Raidl (10.1016/j.asoc.2019.105991_b39) 2015; 244 Peng (10.1016/j.asoc.2019.105991_b36) 2015; 6 Wang (10.1016/j.asoc.2019.105991_b33) 2017; 69 Asrari (10.1016/j.asoc.2019.105991_b41) 2016; 7 Marini (10.1016/j.asoc.2019.105991_b7) 2015; 149 Goh (10.1016/j.asoc.2019.105991_b48) 2015 Yelghi (10.1016/j.asoc.2019.105991_b9) 2018; 62 10.1016/j.asoc.2019.105991_b51 Wang (10.1016/j.asoc.2019.105991_b52) 2018; 22 Cevher (10.1016/j.asoc.2019.105991_b2) 2014; 31 Mirjalili (10.1016/j.asoc.2019.105991_b3) 2015; 83 El Majdouli (10.1016/j.asoc.2019.105991_b37) 2016; 8 Ratnaweera (10.1016/j.asoc.2019.105991_b53) 2004; 83 Bernal (10.1016/j.asoc.2019.105991_b61) 2017; 10 Kang (10.1016/j.asoc.2019.105991_b19) 2018; 54 Zhu (10.1016/j.asoc.2019.105991_b26) 2016 Jayabarathi (10.1016/j.asoc.2019.105991_b49) 2018; vol. 744 Gen (10.1016/j.asoc.2019.105991_b23) 2017; 112 Deb (10.1016/j.asoc.2019.105991_b43) 2002; 6 Bao (10.1016/j.asoc.2019.105991_b62) 2019; 134 Yi (10.1016/j.asoc.2019.105991_b34) 2018; 88 Binol (10.1016/j.asoc.2019.105991_b21) 2018; 54 Wissem (10.1016/j.asoc.2019.105991_b1) 2018; 86 Tang (10.1016/j.asoc.2019.105991_b28) 2013; 17 Silva (10.1016/j.asoc.2019.105991_b20) 2018; 71 Rautray (10.1016/j.asoc.2019.105991_b14) 2017; 477 Opara (10.1016/j.asoc.2019.105991_b8) 2019; 44 Zhang (10.1016/j.asoc.2019.105991_b22) 2019; 130 Hiziroglu (10.1016/j.asoc.2019.105991_b13) 2013; 40 Elsayed (10.1016/j.asoc.2019.105991_b35) 2016; 8 Mirjalili (10.1016/j.asoc.2019.105991_b50) 2015 Połap (10.1016/j.asoc.2019.105991_b45) 2017; 9 Masoudi-Sobhanzadeh (10.1016/j.asoc.2019.105991_b57) 2019; 9 Yang (10.1016/j.asoc.2019.105991_b17) 2008; 178 Zelinka (10.1016/j.asoc.2019.105991_b5) 2015; 25 Goel (10.1016/j.asoc.2019.105991_b15) 2013; 438 Xue (10.1016/j.asoc.2019.105991_b60) 2015; 7 10.1016/j.asoc.2019.105991_b32 Patel (10.1016/j.asoc.2019.105991_b58) 2015; 324 Ghaemi (10.1016/j.asoc.2019.105991_b46) 2014; 41 Xu (10.1016/j.asoc.2019.105991_b30) 2018; 68 Sreekara Reddy (10.1016/j.asoc.2019.105991_b25) 2018; 114 Mirjalili (10.1016/j.asoc.2019.105991_b6) 2019 Ál. Rubio-Largo (10.1016/j.asoc.2019.105991_b24) 2016; 41 Pei (10.1016/j.asoc.2019.105991_b44) 2017; vol. 10386 Lin (10.1016/j.asoc.2019.105991_b29) 2016; 20 Pellerin (10.1016/j.asoc.2019.105991_b38) 2019; 280 Sahoo (10.1016/j.asoc.2019.105991_b63) 2017; 52 Tavakkoli-Moghaddam (10.1016/j.asoc.2019.105991_b31) 2011; 38 Mohapatra (10.1016/j.asoc.2019.105991_b18) 2017; 59 Deb (10.1016/j.asoc.2019.105991_b55) 2007 Fausto (10.1016/j.asoc.2019.105991_b47) 2017; 160 Hosseini (10.1016/j.asoc.2019.105991_b10) 2014; 24 |
| References_xml | – volume: vol. 10386 year: 2017 ident: b44 article-title: Non-dominated sorting and crowding distance based multi-objective chaotic evolution publication-title: Advances in Swarm Intelligence. ICSI 2017 – volume: vol. 744 year: 2018 ident: b49 article-title: The bat algorithm, variants and some practical engineering applications: A review publication-title: Nature-Inspired Algorithms and Applied Optimization – start-page: 1187 year: 2007 end-page: 1194 ident: b55 article-title: Self-adaptive simulated binary crossover for real-parameter optimization publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – volume: 41 start-page: 6676 year: 2014 end-page: 6687 ident: b46 article-title: Forest optimization algorithm publication-title: Expert Syst. Appl. – volume: 74 start-page: 108 year: 2016 end-page: 117 ident: b40 article-title: Integrating matheuristics and metaheuristics for timetabling publication-title: Comput. Oper. Res. – volume: 65 start-page: 91 year: 2018 end-page: 100 ident: b16 article-title: Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification publication-title: Appl. Soft Comput. – volume: 17 start-page: 20 year: 2013 end-page: 45 ident: b28 article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput – volume: 477 start-page: 174 year: 2017 end-page: 186 ident: b14 article-title: Cat swarm optimization based evolutionary framework for multi document summarization publication-title: Physica A – volume: 6 start-page: 481 year: 2015 end-page: 494 ident: b36 article-title: Differential evolution with distributed direction information based mutation operators: An optimization technique for big data publication-title: J. Amb. Itel. Hum. Comp. – start-page: 3332 year: 2015 end-page: 3339 ident: b48 article-title: Evolutionary big optimization (BigOpt) of signals publication-title: 2015 IEEE Congress on Evolutionary Computation – start-page: 43 year: 2019 end-page: 55 ident: b6 article-title: Genetic algorithm publication-title: Evolutionary Algorithms and Neural Networks Studies in Computational Intelligence, Vol. 780 – volume: 112 start-page: 616 year: 2017 end-page: 633 ident: b23 article-title: Recent advances in hybrid evolutionary algorithms for multiobjective manufacturing scheduling publication-title: Comput. Ind. Eng. – volume: 88 start-page: 571 year: 2018 end-page: 585 ident: b34 article-title: An improved NSGA-III algorithm with adaptive mutation operator for big data optimization problems publication-title: Future Gener. Comput. Syst. – volume: 509 start-page: 470 year: 2018 end-page: 487 ident: b54 article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems publication-title: Inform. Sci. – volume: 52 start-page: 64 year: 2017 end-page: 80 ident: b63 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b3 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. – volume: 69 start-page: 806 year: 2017 end-page: 815 ident: b33 article-title: A hybrid multi-objective firefly algorithm for big data optimization publication-title: App. Soft Comput. – volume: 114 start-page: 78 year: 2018 end-page: 90 ident: b25 article-title: An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem publication-title: Measurement – volume: 20 start-page: 711 year: 2016 end-page: 729 ident: b29 article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 324 start-page: 217 year: 2015 end-page: 246 ident: b58 article-title: Heat transfer search (HTS): A novel optimization algorithm publication-title: Inform. Sci. – volume: 244 start-page: 66 year: 2015 end-page: 76 ident: b39 article-title: Decomposition based hybrid metaheuristics publication-title: European J. Oper. Res. – volume: 59 start-page: 340 year: 2017 end-page: 362 ident: b18 article-title: A modified competitive swarm optimizer for large scale optimization problems publication-title: Appl. Soft Comput. – volume: 38 start-page: 10812 year: 2011 end-page: 10821 ident: b31 article-title: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem publication-title: Expert Syst. Appl. – volume: 40 start-page: 6491 year: 2013 end-page: 6507 ident: b13 article-title: Soft computing applications in customer segmentation: State-of-art review and critique publication-title: Expert Syst Appl. – volume: 10 start-page: 18 year: 2017 ident: b61 article-title: Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions publication-title: Algorithms – start-page: 1051 year: 2002 end-page: 1056 ident: b42 article-title: MOPSO: A proposal for multiple objective particle swarm optimization publication-title: IEEE Congr. Evol. Comput. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b56 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 70 start-page: 423 year: 2018 end-page: 464 ident: b12 article-title: Soft computing based object detection and tracking approaches: State-of-the-art survey publication-title: Appl. Soft Comput. – volume: 68 start-page: 268 year: 2018 end-page: 282 ident: b30 article-title: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization publication-title: App. Soft Comput. – volume: 83 start-page: 240 year: 2004 end-page: 255 ident: b53 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 125 year: 2015 end-page: 128 ident: b60 article-title: Optimal parameter settings for bat algorithm publication-title: Int. J. Bio-Inspir. Com. – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: b7 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemom. Intell. Lab. Syst. – volume: 8 start-page: 17 year: 2016 end-page: 33 ident: b35 article-title: Differential evolution framework for big data optimization publication-title: Memetic Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b43 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II evolutionary computation publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 333 year: 2016 end-page: 347 ident: b37 article-title: Fireworks algorithm framework for big data optimization publication-title: Memet. Comput. – volume: 7 start-page: 1401 year: 2016 end-page: 1410 ident: b41 article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration publication-title: IEEE T. Smart Grid – reference: S. Tsutsui, A. Ghosh, A study on the effect of multi-parent recombination in real coded genetic algorithms, in: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 1998. – volume: 24 start-page: 1078 year: 2014 end-page: 1094 ident: b10 article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research publication-title: Appl. Soft Comput. – volume: 22 start-page: 387 year: 2018 end-page: 408 ident: b52 article-title: Particle swarm optimization algorithm: An overview publication-title: Soft. Comput. – volume: 438 start-page: 14 year: 2013 end-page: 21 ident: b15 article-title: A comparative analysis of soft computing techniques for gene prediction publication-title: Anal. Biochem. – volume: 41 start-page: 157 year: 2016 end-page: 168 ident: b24 article-title: Hybrid multiobjective artificial bee colony for multiple sequence alignment publication-title: App. Soft Comput. – volume: 160 start-page: 39 year: 2017 end-page: 55 ident: b47 article-title: A global optimization algorithm inspired in the behavior of selfish herds publication-title: Biosystems – volume: 20 start-page: 170 year: 2019 ident: b11 article-title: Featureselect: A software for feature selection based on machine learning approaches publication-title: BMC Bioinform. – volume: 9 start-page: 9348 year: 2019 ident: b57 article-title: Trader as a new optimization algorithm predicts drug-target interactions efficiently publication-title: Sci. Rep. – volume: 54 start-page: 1 year: 2018 end-page: 4 ident: b19 article-title: A strategy-selecting hybrid optimization algorithm to overcome the problems of the no free lunch theorem publication-title: IEEE Trans. Magn. – volume: 178 start-page: 2985 year: 2008 end-page: 2999 ident: b17 article-title: Large scale evolutionary optimization using cooperative coevolution publication-title: Inform. Sci. – volume: 62 start-page: 29 year: 2018 end-page: 44 ident: b9 article-title: A modified firefly algorithm for global minimum optimization publication-title: Appl. Soft Comput. – volume: 44 start-page: 546 year: 2019 end-page: 558 ident: b8 article-title: Differential evolution: A survey of theoretical analyses publication-title: Swarm Evol. Comput. – volume: 31 start-page: 32 year: 2014 end-page: 43 ident: b2 article-title: Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics publication-title: IEEE Signal Proc. Mag. – volume: 54 start-page: 1377 year: 2018 end-page: 1379 ident: b21 article-title: Hybrid evolutionary search method for complex function optimisation problems publication-title: Electron. Lett. – reference: L.V. Santana-Quintero, N. Ramirez, C.A.C. Coello, A multiobjective particle swarm optimizer hybridized with scatter search, in: 5th Mexican International Conference on Artificial Intelligence, LNCS 4293, 2006, pp. 294–304. – start-page: 177 year: 2016 end-page: 198 ident: b26 article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm publication-title: Inform. Sci. – volume: 130 start-page: 661 year: 2019 end-page: 670 ident: b22 article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems publication-title: Comput. Ind. Eng. – reference: . – volume: 86 start-page: 546 year: 2018 end-page: 564 ident: b1 article-title: An experimental survey on big data frameworks publication-title: Future Gener. Comput. Syst. – volume: 25 start-page: 2 year: 2015 end-page: 14 ident: b5 article-title: A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future publication-title: Swarm Evol. Comput. – volume: 134 start-page: 14 year: 2019 end-page: 27 ident: b62 article-title: A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization publication-title: Expert Syst. Appl. – volume: 71 start-page: 433 year: 2018 end-page: 459 ident: b20 article-title: Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis publication-title: Appl. Soft Comput. – volume: 280 start-page: 395 year: 2019 end-page: 416 ident: b38 article-title: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem publication-title: European J. Oper. Res. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b59 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl-Based Syst. – start-page: 120 year: 2015 end-page: 133 ident: b50 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – start-page: 457 year: 2017 end-page: 494 ident: b4 article-title: Swarm intelligence: A review of algorithms publication-title: Nature-Inspired, Computing and Optimization, Modeling and Optimization in Science and Technologies – volume: 9 start-page: 525 year: 2018 end-page: 540 ident: b27 article-title: Search manager: A dramework for hybridizing different search strategies publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 9 year: 2017 ident: b45 article-title: Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism publication-title: Symmetry – volume: 20 start-page: 170 issue: 1 year: 2019 ident: 10.1016/j.asoc.2019.105991_b11 article-title: Featureselect: A software for feature selection based on machine learning approaches publication-title: BMC Bioinform. doi: 10.1186/s12859-019-2754-0 – volume: 114 start-page: 78 year: 2018 ident: 10.1016/j.asoc.2019.105991_b25 article-title: An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem publication-title: Measurement doi: 10.1016/j.measurement.2017.09.022 – volume: 54 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.asoc.2019.105991_b19 article-title: A strategy-selecting hybrid optimization algorithm to overcome the problems of the no free lunch theorem publication-title: IEEE Trans. Magn. – volume: 22 start-page: 387 issue: 2 year: 2018 ident: 10.1016/j.asoc.2019.105991_b52 article-title: Particle swarm optimization algorithm: An overview publication-title: Soft. Comput. doi: 10.1007/s00500-016-2474-6 – volume: 31 start-page: 32 issue: 5 year: 2014 ident: 10.1016/j.asoc.2019.105991_b2 article-title: Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics publication-title: IEEE Signal Proc. Mag. doi: 10.1109/MSP.2014.2329397 – start-page: 43 year: 2019 ident: 10.1016/j.asoc.2019.105991_b6 article-title: Genetic algorithm – volume: 88 start-page: 571 year: 2018 ident: 10.1016/j.asoc.2019.105991_b34 article-title: An improved NSGA-III algorithm with adaptive mutation operator for big data optimization problems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.06.008 – volume: 477 start-page: 174 year: 2017 ident: 10.1016/j.asoc.2019.105991_b14 article-title: Cat swarm optimization based evolutionary framework for multi document summarization publication-title: Physica A doi: 10.1016/j.physa.2017.02.056 – volume: 59 start-page: 340 year: 2017 ident: 10.1016/j.asoc.2019.105991_b18 article-title: A modified competitive swarm optimizer for large scale optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.060 – volume: 41 start-page: 6676 issue: 15 year: 2014 ident: 10.1016/j.asoc.2019.105991_b46 article-title: Forest optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.009 – volume: 24 start-page: 1078 year: 2014 ident: 10.1016/j.asoc.2019.105991_b10 article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.024 – volume: 8 start-page: 17 issue: 1 year: 2016 ident: 10.1016/j.asoc.2019.105991_b35 article-title: Differential evolution framework for big data optimization publication-title: Memetic Comput. doi: 10.1007/s12293-015-0174-x – volume: 7 start-page: 1401 issue: 3 year: 2016 ident: 10.1016/j.asoc.2019.105991_b41 article-title: Pareto dominance-based multiobjective optimization method for distribution network reconfiguration publication-title: IEEE T. Smart Grid doi: 10.1109/TSG.2015.2468683 – start-page: 1051 year: 2002 ident: 10.1016/j.asoc.2019.105991_b42 article-title: MOPSO: A proposal for multiple objective particle swarm optimization – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2019.105991_b56 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 280 start-page: 395 issue: 2 year: 2019 ident: 10.1016/j.asoc.2019.105991_b38 article-title: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2019.01.063 – start-page: 3332 year: 2015 ident: 10.1016/j.asoc.2019.105991_b48 article-title: Evolutionary big optimization (BigOpt) of signals – volume: 9 start-page: 9348 year: 2019 ident: 10.1016/j.asoc.2019.105991_b57 article-title: Trader as a new optimization algorithm predicts drug-target interactions efficiently publication-title: Sci. Rep. doi: 10.1038/s41598-019-45814-8 – volume: 6 start-page: 481 issue: 4 year: 2015 ident: 10.1016/j.asoc.2019.105991_b36 article-title: Differential evolution with distributed direction information based mutation operators: An optimization technique for big data publication-title: J. Amb. Itel. Hum. Comp. – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.asoc.2019.105991_b3 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 38 start-page: 10812 issue: 9 year: 2011 ident: 10.1016/j.asoc.2019.105991_b31 article-title: A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.050 – volume: 8 start-page: 333 issue: 4 year: 2016 ident: 10.1016/j.asoc.2019.105991_b37 article-title: Fireworks algorithm framework for big data optimization publication-title: Memet. Comput. doi: 10.1007/s12293-016-0201-6 – start-page: 177 issue: 345 year: 2016 ident: 10.1016/j.asoc.2019.105991_b26 article-title: A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.01.046 – volume: 324 start-page: 217 year: 2015 ident: 10.1016/j.asoc.2019.105991_b58 article-title: Heat transfer search (HTS): A novel optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.06.044 – volume: 41 start-page: 157 year: 2016 ident: 10.1016/j.asoc.2019.105991_b24 article-title: Hybrid multiobjective artificial bee colony for multiple sequence alignment publication-title: App. Soft Comput. doi: 10.1016/j.asoc.2015.12.034 – volume: 160 start-page: 39 year: 2017 ident: 10.1016/j.asoc.2019.105991_b47 article-title: A global optimization algorithm inspired in the behavior of selfish herds publication-title: Biosystems doi: 10.1016/j.biosystems.2017.07.010 – volume: 20 start-page: 711 issue: 5 year: 2016 ident: 10.1016/j.asoc.2019.105991_b29 article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 130 start-page: 661 year: 2019 ident: 10.1016/j.asoc.2019.105991_b22 article-title: Hybrid multiobjective evolutionary algorithm based on differential evolution for flow shop scheduling problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.03.019 – volume: 509 start-page: 470 year: 2018 ident: 10.1016/j.asoc.2019.105991_b54 article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.10.005 – volume: 83 start-page: 240 year: 2004 ident: 10.1016/j.asoc.2019.105991_b53 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – volume: vol. 10386 year: 2017 ident: 10.1016/j.asoc.2019.105991_b44 article-title: Non-dominated sorting and crowding distance based multi-objective chaotic evolution – ident: 10.1016/j.asoc.2019.105991_b51 doi: 10.1109/ICEC.1998.700159 – volume: 52 start-page: 64 year: 2017 ident: 10.1016/j.asoc.2019.105991_b63 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.022 – volume: 69 start-page: 806 year: 2017 ident: 10.1016/j.asoc.2019.105991_b33 article-title: A hybrid multi-objective firefly algorithm for big data optimization publication-title: App. Soft Comput. doi: 10.1016/j.asoc.2017.06.029 – volume: 149 start-page: 153 year: 2015 ident: 10.1016/j.asoc.2019.105991_b7 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.020 – volume: 70 start-page: 423 year: 2018 ident: 10.1016/j.asoc.2019.105991_b12 article-title: Soft computing based object detection and tracking approaches: State-of-the-art survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.023 – volume: 54 start-page: 1377 issue: 24 year: 2018 ident: 10.1016/j.asoc.2019.105991_b21 article-title: Hybrid evolutionary search method for complex function optimisation problems publication-title: Electron. Lett. doi: 10.1049/el.2018.6506 – start-page: 1187 year: 2007 ident: 10.1016/j.asoc.2019.105991_b55 article-title: Self-adaptive simulated binary crossover for real-parameter optimization – volume: 7 start-page: 125 issue: 2 year: 2015 ident: 10.1016/j.asoc.2019.105991_b60 article-title: Optimal parameter settings for bat algorithm publication-title: Int. J. Bio-Inspir. Com. doi: 10.1504/IJBIC.2015.069304 – volume: 9 issue: 10 year: 2017 ident: 10.1016/j.asoc.2019.105991_b45 article-title: Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism publication-title: Symmetry doi: 10.3390/sym9100203 – volume: 17 start-page: 20 issue: 1 year: 2013 ident: 10.1016/j.asoc.2019.105991_b28 article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput doi: 10.1109/TEVC.2012.2185702 – volume: 178 start-page: 2985 year: 2008 ident: 10.1016/j.asoc.2019.105991_b17 article-title: Large scale evolutionary optimization using cooperative coevolution publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.02.017 – volume: 9 start-page: 525 issue: 5 year: 2018 ident: 10.1016/j.asoc.2019.105991_b27 article-title: Search manager: A dramework for hybridizing different search strategies publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 438 start-page: 14 issue: 1 year: 2013 ident: 10.1016/j.asoc.2019.105991_b15 article-title: A comparative analysis of soft computing techniques for gene prediction publication-title: Anal. Biochem. doi: 10.1016/j.ab.2013.03.015 – ident: 10.1016/j.asoc.2019.105991_b32 doi: 10.1007/11925231_28 – volume: 10 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105991_b61 article-title: Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions publication-title: Algorithms doi: 10.3390/a10010018 – volume: 62 start-page: 29 year: 2018 ident: 10.1016/j.asoc.2019.105991_b9 article-title: A modified firefly algorithm for global minimum optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.032 – volume: 40 start-page: 6491 issue: 16 year: 2013 ident: 10.1016/j.asoc.2019.105991_b13 article-title: Soft computing applications in customer segmentation: State-of-art review and critique publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2013.05.052 – volume: 25 start-page: 2 year: 2015 ident: 10.1016/j.asoc.2019.105991_b5 article-title: A survey on evolutionary algorithms dynamics and its complexity – mutual relations, past, present and future publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.06.002 – volume: 112 start-page: 616 year: 2017 ident: 10.1016/j.asoc.2019.105991_b23 article-title: Recent advances in hybrid evolutionary algorithms for multiobjective manufacturing scheduling publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.12.045 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.asoc.2019.105991_b43 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II evolutionary computation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 74 start-page: 108 year: 2016 ident: 10.1016/j.asoc.2019.105991_b40 article-title: Integrating matheuristics and metaheuristics for timetabling publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.04.016 – volume: 86 start-page: 546 year: 2018 ident: 10.1016/j.asoc.2019.105991_b1 article-title: An experimental survey on big data frameworks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.04.032 – volume: 244 start-page: 66 issue: 1 year: 2015 ident: 10.1016/j.asoc.2019.105991_b39 article-title: Decomposition based hybrid metaheuristics publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2014.12.005 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.asoc.2019.105991_b59 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – start-page: 120 issue: 96 year: 2015 ident: 10.1016/j.asoc.2019.105991_b50 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 71 start-page: 433 year: 2018 ident: 10.1016/j.asoc.2019.105991_b20 article-title: Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.050 – volume: 134 start-page: 14 year: 2019 ident: 10.1016/j.asoc.2019.105991_b62 article-title: A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.032 – volume: 44 start-page: 546 year: 2019 ident: 10.1016/j.asoc.2019.105991_b8 article-title: Differential evolution: A survey of theoretical analyses publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.06.010 – volume: 68 start-page: 268 year: 2018 ident: 10.1016/j.asoc.2019.105991_b30 article-title: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization publication-title: App. Soft Comput. doi: 10.1016/j.asoc.2018.03.053 – volume: 65 start-page: 91 year: 2018 ident: 10.1016/j.asoc.2019.105991_b16 article-title: Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.036 – start-page: 457 year: 2017 ident: 10.1016/j.asoc.2019.105991_b4 article-title: Swarm intelligence: A review of algorithms doi: 10.1007/978-3-319-50920-4_19 – volume: vol. 744 year: 2018 ident: 10.1016/j.asoc.2019.105991_b49 article-title: The bat algorithm, variants and some practical engineering applications: A review |
| SSID | ssj0016928 |
| Score | 2.4510088 |
| Snippet | Big Data optimization (Big-Opt) refers to optimization problems which require to manage the properties of big data analytics. In the present paper, the Search... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105991 |
| SubjectTerms | Big Data optimization Evolutionary operators Hybrid multi-objective evolutionary algorithm Search Manager framework |
| Title | Hybrid multi-objective evolutionary algorithm based on Search Manager framework for big data optimization problems |
| URI | https://dx.doi.org/10.1016/j.asoc.2019.105991 |
| Volume | 87 |
| WOSCitedRecordID | wos000509341500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4ELb0R5yQduUVA2Dz-OVSkqCFUICtpb5PjRzdJNqiSt2v56xrGThi2qAIlLFFnr9crz7ecZ-xsPQm-yREAkW0BsYuwxI4nnYUESEkqTzYGTk1j0J7rfP9GDA7ZY8M9eq9r25QRoVbHzc37yX00NbWBsmzr7F-YevxQa4B2MDk8wOzz_yPD7FzYJyykFw7pYOUYL9Jkf1crkxPFR3ZTdch3YVUwFPWn02x9ODtMEZhBtOT1neRRYLWlQA8Osfepm4IvRtFMHd_BqW6D3Xq9-2g2LY3_IpHr1AHBMq82VG1peluE73Ygfy7YvMgxUsxTrtVDhF30ppjsTEIZGv6g8rqfMOIYlLEy533fUro3ROOTE1W4ZaNmtw9cY3m02rN4KAK9V5nFbqZi7il8bN2d_tWPZocBJjSCKiG6jrZhmnM3Q1s6HvcXH8biJ8L4I7_jbfHaVEwJujvR7D2bilRw-QPd8OIF3HAweolu6eoTuD6U6sGfux6hxqMAbqMBTVOARFbhHBa4r7FCBPSrwiAoMqMCACmxRgaeowAMqnqBv7_cOd_dDX24jlAkhXagko8wQqmIqBNWaRTJKtaSpibJIFkqSuJgbpY1kEl4YlxFnGSmEyjRjkidP0ayqK_0MYZrAJDKSmlSJ1GQFT7hQRBlOE0kLXWyj-TCFufR30duSKMf5IDpc5XbaczvtuZv2bRSMfU7cTSw3fjobLJN7X9L5iDkA6YZ-z_-x3wt09-ov8BLNuuZUv0J35FlXts1rj7ef8j-fRg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+multi-objective+evolutionary+algorithm+based+on+Search+Manager+framework+for+big+data+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Abdi%2C+Yousef&rft.au=Feizi-Derakhshi%2C+Mohammad-Reza&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=87&rft_id=info:doi/10.1016%2Fj.asoc.2019.105991&rft.externalDocID=S1568494619307720 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |