On nonisothermal elastoplastic analysis of shell components employing realistic hardening responses
In the present paper, efficient numerical algorithms for elastoplastic analysis of shell-like structural components will be proposed employing nonisothermal, realistic, highly nonlinear hardening responses. The closest point projection integration algorithm is presented using a Reissner–Mindlin type...
Saved in:
| Published in: | International journal of solids and structures Vol. 38; no. 28; pp. 5019 - 5039 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.07.2001
Elsevier Science |
| Subjects: | |
| ISSN: | 0020-7683, 1879-2146 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In the present paper, efficient numerical algorithms for elastoplastic analysis of shell-like structural components will be proposed employing nonisothermal, realistic, highly nonlinear hardening responses. The closest point projection integration algorithm is presented using a Reissner–Mindlin type kinematic shell model, completely formulated in tensor notation. Further, a consistent elastoplastic tangent modulus is derived, which ensures high convergence rates in the global iteration approach. The integration algorithm has been implemented into a layered assumed strain isoparametric finite element, which also enables geometrical nonlinearities including finite rotations. The nonisothermal elastoplastic response of a circular cylindrical shell and a box column under axial compression is analysed. Under the assumption of an adiabatic process, the increase in temperature is computed during elastoplastic deformation. Robustness and numerical stability of the proposed algorithms are demonstrated. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0020-7683 1879-2146 |
| DOI: | 10.1016/S0020-7683(00)00336-X |