Relative cluster entropy for power-law correlated sequences
We propose an information-theoretical measure, the relative cluster entropy \mathcal{D_C}[P\|Q] [ P ∥ Q ] , to discriminate among cluster partitions characterised by probability distribution functions P and Q. The measure is illustrated with the clusters generated by pairs of fractional Brownian mot...
Uloženo v:
| Vydáno v: | SciPost physics Ročník 13; číslo 3; s. 076 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
SciPost
01.09.2022
|
| ISSN: | 2542-4653, 2542-4653 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose an information-theoretical measure, the relative cluster entropy
\mathcal{D_C}[P\|Q]
[
P
∥
Q
]
, to discriminate among cluster partitions characterised by probability distribution functions P and Q. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents
H_1
H
1
and
H_2
H
2
respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between
H_1
H
1
and
H_2
H
2
. By using the minimum relative entropy principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The minimum relative cluster entropy yields optimal Hurst exponents
H_1
H
1
=0.55,
H_1
H
1
=0.57, and
H_1
H
1
=0.63 respectively for the prices of DJIA, S and P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables. |
|---|---|
| AbstractList | We propose an information-theoretical measure, the \textit{relative cluster entropy} $\mathcal{D_{C}}[P \| Q] $, to discriminate among cluster partitions characterised by probability distribution functions $P$ and $Q$. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents $H_1$ and $H_2$ respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between $H_1$ and $H_2$. By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents $H_1=0.55$, $H_1=0.57$, and $H_1=0.63$ respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables. We propose an information-theoretical measure, the relative cluster entropy \mathcal{D_C}[P\|Q] [ P ∥ Q ] , to discriminate among cluster partitions characterised by probability distribution functions P and Q. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents H_1 H 1 and H_2 H 2 respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between H_1 H 1 and H_2 H 2 . By using the minimum relative entropy principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The minimum relative cluster entropy yields optimal Hurst exponents H_1 H 1 =0.55, H_1 H 1 =0.57, and H_1 H 1 =0.63 respectively for the prices of DJIA, S and P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables. |
| ArticleNumber | 076 |
| Author | Carbone, Anna Ponta, Linda |
| Author_xml | – sequence: 1 givenname: Anna surname: Carbone fullname: Carbone, Anna organization: Polytechnic University of Turin – sequence: 2 givenname: Linda surname: Ponta fullname: Ponta, Linda organization: University Carlo Cattaneo |
| BookMark | eNp9kNtKw0AQhhepYK19BCEvkLqnbDb0SoqHQsHi4XrZw6ymxGzdTS19e2OrULzwaoZh_n_--c7RoA0tIHRJ8IQSLuTVk62XIXXLt12aEDZhE1yKEzSkBac5FwUbHPVnaJzSCmNMCamIKIZo-giN7upPyGyzSR3EDNouhvUu8yFm67CFmDd6m9kQ4_cmuCzBxwZaC-kCnXrdJBj_1BF6ub15nt3ni4e7-ex6kVsmRJeXBigxRBNtpRcFdmAL8JJQa6x03nhXcOOwLmRZEWxKb4h0jBrsOFBcGjZC84OvC3ql1rF-13Gngq7VfhDiq9Kxq20DCgtqnfXSO255JSrtKe9PGS1BA6es95oevGwMKUXwytZdDyD0X-u6UQSrPVZ1hFURppjqsfbq4o_6N83_ui9w0oTW |
| CitedBy_id | crossref_primary_10_1016_j_patrec_2025_03_004 crossref_primary_10_1016_j_cnsns_2024_108469 crossref_primary_10_1103_PhysRevE_111_014311 |
| Cites_doi | 10.1038/nphys3230 10.1103/PhysRevLett.95.244101 10.1103/PhysRevE.97.013107 10.1111/jofi.12090 10.1007/s11063-019-10187-6 10.1038/srep02721 10.1103/PhysRevE.93.022114 10.1103/PhysRevE.69.026105 10.1103/PhysRevX.4.031015 10.1016/j.patcog.2005.01.025 10.1016/j.physa.2007.04.105 10.1103/PhysRevLett.98.080602 10.1016/j.physa.2021.125777 10.1137/070710111 10.1002/widm.1444 10.1103/PhysRevLett.109.120604 10.1103/RevModPhys.74.197 10.1007/s11229-020-02895-7 10.1098/rspa.2012.0683 10.1016/j.jmva.2006.11.013 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21468/SciPostPhys.13.3.076 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2542-4653 |
| ExternalDocumentID | oai_doaj_org_article_062cdcf8fd4c4969af24f81ba8eae423 10_21468_SciPostPhys_13_3_076 |
| GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c366t-7be21b1a1ac8f650dec5ef812cbc8dfbfd54bd0a587910b7fb18d32b0d4e207b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000921681700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2542-4653 |
| IngestDate | Fri Oct 03 12:49:22 EDT 2025 Tue Nov 18 22:15:18 EST 2025 Sat Nov 29 06:22:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-7be21b1a1ac8f650dec5ef812cbc8dfbfd54bd0a587910b7fb18d32b0d4e207b3 |
| OpenAccessLink | https://doaj.org/article/062cdcf8fd4c4969af24f81ba8eae423 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_062cdcf8fd4c4969af24f81ba8eae423 crossref_citationtrail_10_21468_SciPostPhys_13_3_076 crossref_primary_10_21468_SciPostPhys_13_3_076 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | SciPost physics |
| PublicationYear | 2022 |
| Publisher | SciPost |
| Publisher_xml | – name: SciPost |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1038/nphys3230 – ident: ref7 doi: 10.1103/PhysRevLett.95.244101 – ident: ref10 doi: 10.1103/PhysRevE.97.013107 – ident: ref11 doi: 10.1111/jofi.12090 – ident: ref8 doi: 10.1007/s11063-019-10187-6 – ident: ref18 doi: 10.1038/srep02721 – ident: ref1 doi: 10.1103/PhysRevE.93.022114 – ident: ref16 doi: 10.1103/PhysRevE.69.026105 – ident: ref4 doi: 10.1103/PhysRevX.4.031015 – ident: ref15 doi: 10.1016/j.patcog.2005.01.025 – ident: ref17 doi: 10.1016/j.physa.2007.04.105 – ident: ref3 doi: 10.1103/PhysRevLett.98.080602 – ident: ref19 doi: 10.1016/j.physa.2021.125777 – ident: ref20 doi: 10.1137/070710111 – ident: ref13 doi: 10.1002/widm.1444 – ident: ref5 doi: 10.1103/PhysRevLett.109.120604 – ident: ref9 doi: 10.1103/RevModPhys.74.197 – ident: ref12 doi: 10.1007/s11229-020-02895-7 – ident: ref6 doi: 10.1098/rspa.2012.0683 – ident: ref14 doi: 10.1016/j.jmva.2006.11.013 |
| SSID | ssj0002119165 |
| Score | 2.2148583 |
| Snippet | We propose an information-theoretical measure, the relative cluster entropy
\mathcal{D_C}[P\|Q]
[
P
∥
Q
]
, to discriminate among cluster partitions... We propose an information-theoretical measure, the \textit{relative cluster entropy} $\mathcal{D_{C}}[P \| Q] $, to discriminate among cluster partitions... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 076 |
| Title | Relative cluster entropy for power-law correlated sequences |
| URI | https://doaj.org/article/062cdcf8fd4c4969af24f81ba8eae423 |
| Volume | 13 |
| WOSCitedRecordID | wos000921681700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA4yFLyInzi_yMFrtzZJ0wRPKhteHB4UdgvJmwSEsY19iRd_u0laR2-7eOmhJKV53vbNk_DmeRC651HT3BPICC9pxnguQx6EKiPGSiqpk0zYZDZRjUZiPJZvLauvWBNWywPXwPVzTsCCF94yYJJL7QnzgWtp4bQLXCBm37ySrcVUzMFJt4yX9ZGd6F0t-uFfif63sbCyV9Ae7eVRZ6Q1GbU0-9PkMjxGRw0rxI_125ygPTc9RQepOhOWZ-ihLlnbOAyTdVQ2wHFPdjb_xoFy4nk0Ossm-gtDtNoILZ3F2xLpc_QxHLw_v2SN60EGlPNVVhlHClPoQoPwgT9ZB6ULIyZgQFhvvC2ZsbkuRRWmelN5UwhLicktcwEJQy9QZzqbukuEvYcq5A9HjCkZ11oTqp3XnpaeBp7guoj9DV9BIwkenSkmKiwNEmqqhZoqqKIqoNZFvW23ea2JsavDU8R22zhKWqcbIdCqCbTaFeir_3jINTok8fxCKhK7QZ3VYu1u0T5sVp_LxV36hsL19WfwC_cC0cA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+cluster+entropy+for+power-law+correlated+sequences&rft.jtitle=SciPost+physics&rft.au=Carbone%2C+Anna&rft.au=Ponta%2C+Linda&rft.date=2022-09-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=13&rft.issue=3&rft_id=info:doi/10.21468%2FSciPostPhys.13.3.076&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_13_3_076 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |