Existence and stability of solutions for a fourth order overdetermined problem

We examine a Serrin-type overdetermined boundary value problem for the biharmonic operator. If the underlying set is the unit ball, a solution exists for a constant overdetermining condition. We prove the existence of an open and bounded domain admitting a solution to the boundary value problem for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical analysis and applications Ročník 505; číslo 2; s. 125531
Hlavní autori: Gilsbach, Alexandra, Stollenwerk, Kathrin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.01.2022
Predmet:
ISSN:0022-247X, 1096-0813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We examine a Serrin-type overdetermined boundary value problem for the biharmonic operator. If the underlying set is the unit ball, a solution exists for a constant overdetermining condition. We prove the existence of an open and bounded domain admitting a solution to the boundary value problem for every small perturbation of the overdetermining condition. Moreover, we establish stability estimates for the deviation of this domain from the unit ball in terms of the perturbation. Our approach is motivated by a recent result of Gilsbach and Onodera and applies a result of Ferrero, Gazzola and Weth for a fourth order Steklov problem.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2021.125531