High-fidelity realization of the AKLT state on a NISQ-era quantum processor
The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with t...
Uloženo v:
| Vydáno v: | SciPost physics Ročník 15; číslo 4; s. 170 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
SciPost
01.10.2023
|
| ISSN: | 2542-4653, 2542-4653 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with trapped-ions as well as photonic systems. In this work, we successfully prepared the AKLT state on a noisy intermediate-scale quantum (NISQ) era quantum device. In particular, we developed a non-deterministic algorithm on the IBM quantum processor, where the non-unitary operator necessary for the AKLT state preparation is embedded in a unitary operator with an additional ancilla qubit for each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively represented by a parametrized circuit composed of single-qubit and nearest-neighbor CX gates. Compared with the conventional operator decomposition method from Qiskit, our approach results in a much shallower circuit depth with only nearest-neighbor gates, while maintaining a fidelity in excess of 99.99% with the original operator. By simultaneously post-selecting each ancilla qubit such that it belongs to the subspace of spin-up |↑>, an AKLT state can be systematically obtained by evolving from an initial trivial product state of singlets plus ancilla qubits in spin-up on a quantum computer, and it is subsequently recorded by performing measurements on all the other physical qubits. We show how the accuracy of our implementation can be further improved on the IBM quantum processor with readout error mitigation. |
|---|---|
| AbstractList | The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation function, with fractionalized excitations at its boundaries. So far, the one-dimensional AKLT model has only been experimentally realized with trapped-ions as well as photonic systems. In this work, we successfully prepared the AKLT state on a noisy intermediate-scale quantum (NISQ) era quantum device. In particular, we developed a non-deterministic algorithm on the IBM quantum processor, where the non-unitary operator necessary for the AKLT state preparation is embedded in a unitary operator with an additional ancilla qubit for each pair of auxiliary spin-1/2’s. Such a unitary operator is effectively represented by a parametrized circuit composed of single-qubit and nearest-neighbor CX gates. Compared with the conventional operator decomposition method from Qiskit, our approach results in a much shallower circuit depth with only nearest-neighbor gates, while maintaining a fidelity in excess of 99.99% with the original operator. By simultaneously post-selecting each ancilla qubit such that it belongs to the subspace of spin-up |↑>, an AKLT state can be systematically obtained by evolving from an initial trivial product state of singlets plus ancilla qubits in spin-up on a quantum computer, and it is subsequently recorded by performing measurements on all the other physical qubits. We show how the accuracy of our implementation can be further improved on the IBM quantum processor with readout error mitigation. |
| ArticleNumber | 170 |
| Author | Yang, Bo Chen, Tianqi Shen, Ruizhe Lee, Ching Hua |
| Author_xml | – sequence: 1 givenname: Tianqi surname: Chen fullname: Chen, Tianqi organization: Nanyang Technological University – sequence: 2 givenname: Ruizhe surname: Shen fullname: Shen, Ruizhe organization: National University of Singapore – sequence: 3 givenname: Ching Hua surname: Lee fullname: Lee, Ching Hua organization: National University of Singapore – sequence: 4 givenname: Bo surname: Yang fullname: Yang, Bo organization: Nanyang Technological University |
| BookMark | eNp9kNtKAzEQhoNUsGofQcgLbE02yTaLV6V4KBYPWK9DNpm0KdumJulFfXqXqlC88GqGH76Pmf8c9TZhAwhdUTIsKa_k9ZvxLyHll-U-DakY8iEdkRPULwUvC14J1jvaz9AgpRUhpKS0ppXoo8cHv1gWzltofd7jCLr1nzr7sMHB4bwEPH6czXHKOgPuQo2fpm-vBUSNP3Z6k3drvI3BQEohXqJTp9sEg595gd7vbueTh2L2fD-djGeFYVWVi0rWkjW1lTWAlUwQXlvhgFDnuGksc6XVpNK0GQHISlpu60Ywa0kNNQdesgs0_fbaoFdqG_1ax70K2qtDEOJC6Zi9aUE1ICiRBpqSSg6kE42s1qxkjXPUSN65br5dJoaUIjhlfD78n6P2raJEHWpWRzUrKhRXXc0dLf7Qv9f8z30BIxGITA |
| CitedBy_id | crossref_primary_10_1038_s42005_025_01947_z crossref_primary_10_1038_s41467_025_55953_4 crossref_primary_10_1038_s42005_024_01591_z crossref_primary_10_1038_s42005_025_02011_6 crossref_primary_10_1103_PRXQuantum_5_030301 crossref_primary_10_1038_s41534_024_00898_7 crossref_primary_10_1103_PhysRevLett_133_216601 crossref_primary_10_1103_PhysRevB_111_064308 crossref_primary_10_1103_PhysRevB_111_045420 crossref_primary_10_1007_s11467_023_1309_z crossref_primary_10_3390_app14198579 crossref_primary_10_1103_PRXQuantum_6_020349 |
| Cites_doi | 10.17637/RH.7000520 10.1109/QCE52317.2021.00058 10.1038/nphys1777 10.1103/PhysRevLett.129.080501 10.1088/0953-8984/2/26/010 10.1103/PhysRevX.10.021019 10.1038/s41598-019-53253-8 10.1103/PRXQuantum.2.030334 10.1103/PhysRevLett.59.799 10.1038/s41567-022-01914-3 10.1103/PhysRevA.103.032606 10.1038/s41534-019-0187-2 10.1038/s41586-021-04257-w 10.48550/arXiv.1810.12745 10.1038/s41586-019-1040-7 10.1126/science.aaa7432 10.1103/PhysRevLett.109.016401 10.1007/BF01218021 10.48550/arXiv.2208.14944 10.1126/science.abb9811 10.1073/pnas.84.19.6611 10.21105/joss.00819 10.1103/RevModPhys.80.885 10.1038/s42005-022-01015-w 10.1016/j.aop.2011.03.006 10.3389/fphy.2022.906399 10.1103/PhysRevA.103.042605 10.1103/PhysRevApplied.15.034026 10.1103/PhysRevLett.128.010402 10.1119/10.0006204 10.1103/PhysRevX.8.031027 10.22331/q-2019-05-13-140 10.1021/jp970984n 10.1103/PhysRevA.82.052309 10.1103/PhysRevA.86.032328 10.22331/q-2018-12-21-114 10.1038/ncomms15791 10.1103/PhysRevB.106.224308 10.5281/zenodo.8131793 10.1103/PhysRevLett.119.180509 10.22331/q-2018-08-06-79 10.3115/1118853.1118871 10.1103/PhysRevLett.121.086808 10.1103/PhysRevResearch.3.023190 10.1038/s41586-019-1666-5 10.1103/PhysRevA.107.042616 10.1103/PhysRevResearch.2.033069 10.1103/PhysRevB.48.3844 10.1103/PhysRevB.98.235156 10.1038/s42005-021-00547-x 10.1038/s41567-019-0704-4 10.1103/PhysRevA.107.L010202 10.1103/PRXQuantum.2.010317 10.1038/s41534-021-00420-3 10.1103/PhysRevB.105.054304 10.1126/science.177.4047.393 10.1103/PhysRevB.98.241108 10.1103/PhysRevX.7.041047 10.1103/PhysRevResearch.5.L022037 10.1038/s41467-022-33737-4 10.1103/PhysRevX.9.041015 10.1038/s42254-019-0086-7 10.1109/QCE49297.2020.00045 10.1103/PhysRevLett.106.070501 10.1017/CBO9780511721724 10.1103/PhysRevLett.129.056801 10.1103/PRXQuantum.1.020309 10.1145/1273496.1273501 10.1109/QCE49297.2020.00030 10.1103/PRXQuantum.4.020315 10.1515/crll.1909.136.210 10.1038/nphys3784 10.1103/PhysRevA.107.032614 10.1038/nphys1157 10.1038/s42254-021-00348-9 10.1088/0953-8984/1/19/001 10.1038/s41467-021-25355-3 10.1103/PhysRevLett.125.120502 10.1103/PhysRevB.104.195102 10.1103/PhysRevLett.125.160503 10.1038/s41534-019-0217-0 10.1103/PhysRevA.101.032310 10.1103/PhysRevX.5.021026 10.1007/978-3-031-03998-0_5 10.1007/978-3-030-41265-4 10.1103/PRXQuantum.2.040326 10.1016/j.aop.2010.09.012 10.1103/PhysRevResearch.5.013190 10.1080/00018732.2021.1876991 10.1103/PhysRevLett.95.010501 10.1142/S0219749905001456 10.1038/s41534-022-00527-1 10.1103/RevModPhys.71.1253 10.1103/PhysRevA.106.022414 10.1016/j.physrep.2021.08.003 10.1103/PhysRevB.98.125431 10.1103/RevModPhys.93.045003 10.1088/1751-8121/ac6bd0 10.1126/sciadv.abm7652 10.1038/nphys4323 10.1103/PhysRevResearch.4.L022020 10.1103/PhysRevB.102.125112 10.1103/PhysRevLett.129.140502 10.1103/RevModPhys.91.015005 10.1126/science.285.5432.1368 10.1126/science.aaf8834 10.1103/PhysRevB.102.081115 10.1103/PhysRevB.102.054303 10.1103/PhysRevLett.122.180501 10.1007/BFb0119591 10.1103/PhysRevA.93.032318 10.1103/PRXQuantum.2.017003 10.1103/physrevlett.131.110602 10.1103/PhysRevLett.94.170201 10.1103/PhysRevLett.127.120502 10.1109/TQE.2022.3174547 10.3390/e24020244 10.1088/1751-8121/abad76 10.1103/PhysRevResearch.2.033428 10.1126/science.abi8794 10.1103/PhysRevB.98.094434 10.1126/science.abe8770 10.1103/PRXQuantum.2.010342 10.1103/PhysRevLett.86.5188 10.5281/zenodo.2573505 10.1038/s41598-018-23764-x 10.1103/PRXQuantum.3.020342 10.1103/PhysRevB.102.085117 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21468/SciPostPhys.15.4.170 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2542-4653 |
| ExternalDocumentID | oai_doaj_org_article_be5108ceb2184e09b57daa323bff1c84 10_21468_SciPostPhys_15_4_170 |
| GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c366t-68983b9d89eed835049d5fe01ff4cbd3f2da06a1b7ee868d4d9b53dd09e94e423 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122874400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2542-4653 |
| IngestDate | Fri Oct 03 12:41:59 EDT 2025 Sat Nov 29 06:22:47 EST 2025 Tue Nov 18 21:12:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c366t-68983b9d89eed835049d5fe01ff4cbd3f2da06a1b7ee868d4d9b53dd09e94e423 |
| OpenAccessLink | https://doaj.org/article/be5108ceb2184e09b57daa323bff1c84 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_be5108ceb2184e09b57daa323bff1c84 crossref_citationtrail_10_21468_SciPostPhys_15_4_170 crossref_primary_10_21468_SciPostPhys_15_4_170 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | SciPost physics |
| PublicationYear | 2023 |
| Publisher | SciPost |
| Publisher_xml | – name: SciPost |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref131 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref123 doi: 10.17637/RH.7000520 – ident: ref131 doi: 10.1109/QCE52317.2021.00058 – ident: ref52 doi: 10.1038/nphys1777 – ident: ref122 doi: 10.1103/PhysRevLett.129.080501 – ident: ref39 doi: 10.1088/0953-8984/2/26/010 – ident: ref115 doi: 10.1103/PhysRevX.10.021019 – ident: ref106 doi: 10.1038/s41598-019-53253-8 – ident: ref20 doi: 10.1103/PRXQuantum.2.030334 – ident: ref36 doi: 10.1103/PhysRevLett.59.799 – ident: ref129 doi: 10.1038/s41567-022-01914-3 – ident: ref19 doi: 10.1103/PhysRevA.103.032606 – ident: ref32 doi: 10.1038/s41534-019-0187-2 – ident: ref10 doi: 10.1038/s41586-021-04257-w – ident: ref60 doi: 10.48550/arXiv.1810.12745 – ident: ref127 doi: 10.1038/s41586-019-1040-7 – ident: ref3 doi: 10.1126/science.aaa7432 – ident: ref30 doi: 10.1103/PhysRevLett.109.016401 – ident: ref37 doi: 10.1007/BF01218021 – ident: ref101 doi: 10.48550/arXiv.2208.14944 – ident: ref12 doi: 10.1126/science.abb9811 – ident: ref80 doi: 10.1073/pnas.84.19.6611 – ident: ref59 doi: 10.21105/joss.00819 – ident: ref2 doi: 10.1103/RevModPhys.80.885 – ident: ref110 doi: 10.1038/s42005-022-01015-w – ident: ref48 doi: 10.1016/j.aop.2011.03.006 – ident: ref87 doi: 10.3389/fphy.2022.906399 – ident: ref130 doi: 10.1103/PhysRevA.103.042605 – ident: ref128 doi: 10.1103/PhysRevApplied.15.034026 – ident: ref102 doi: 10.1103/PhysRevLett.128.010402 – ident: ref26 doi: 10.1119/10.0006204 – ident: ref125 doi: 10.1103/PhysRevX.8.031027 – ident: ref61 doi: 10.22331/q-2019-05-13-140 – ident: ref81 doi: 10.1021/jp970984n – ident: ref92 doi: 10.1103/PhysRevA.82.052309 – ident: ref93 doi: 10.1103/PhysRevA.86.032328 – ident: ref15 doi: 10.22331/q-2018-12-21-114 – ident: ref111 doi: 10.1038/ncomms15791 – ident: ref116 doi: 10.1103/PhysRevB.106.224308 – ident: ref86 doi: 10.5281/zenodo.8131793 – ident: ref124 doi: 10.1103/PhysRevLett.119.180509 – ident: ref7 doi: 10.22331/q-2018-08-06-79 – ident: ref78 doi: 10.3115/1118853.1118871 – ident: ref45 doi: 10.1103/PhysRevLett.121.086808 – ident: ref120 doi: 10.1103/PhysRevResearch.3.023190 – ident: ref8 doi: 10.1038/s41586-019-1666-5 – ident: ref35 doi: 10.1103/PhysRevA.107.042616 – ident: ref99 doi: 10.1103/PhysRevResearch.2.033069 – ident: ref40 doi: 10.1103/PhysRevB.48.3844 – ident: ref68 doi: 10.1103/PhysRevB.98.235156 – ident: ref107 doi: 10.1038/s42005-021-00547-x – ident: ref33 doi: 10.1038/s41567-019-0704-4 – ident: ref109 doi: 10.1103/PhysRevA.107.L010202 – ident: ref62 doi: 10.1103/PRXQuantum.2.010317 – ident: ref63 doi: 10.1038/s41534-021-00420-3 – ident: ref70 doi: 10.1103/PhysRevB.105.054304 – ident: ref1 doi: 10.1126/science.177.4047.393 – ident: ref114 doi: 10.1103/PhysRevB.98.241108 – ident: ref5 doi: 10.1103/PhysRevX.7.041047 – ident: ref57 doi: 10.1103/PhysRevResearch.5.L022037 – ident: ref64 doi: 10.1038/s41467-022-33737-4 – ident: ref104 doi: 10.1103/PhysRevX.9.041015 – ident: ref77 doi: 10.1103/PRXQuantum.2.010317 – ident: ref24 doi: 10.1038/s42254-019-0086-7 – ident: ref126 doi: 10.1109/QCE49297.2020.00045 – ident: ref47 doi: 10.1103/PhysRevLett.106.070501 – ident: ref83 doi: 10.1017/CBO9780511721724 – ident: ref14 doi: 10.1103/PhysRevLett.129.056801 – ident: ref13 doi: 10.1103/PRXQuantum.1.020309 – ident: ref79 doi: 10.1145/1273496.1273501 – ident: ref28 doi: 10.1109/QCE49297.2020.00030 – ident: ref55 doi: 10.1103/PRXQuantum.4.020315 – ident: ref88 doi: 10.1515/crll.1909.136.210 – ident: ref95 doi: 10.1038/nphys3784 – ident: ref41 doi: 10.1103/PhysRevA.107.032614 – ident: ref50 doi: 10.1038/nphys1157 – ident: ref75 doi: 10.1038/s42254-021-00348-9 – ident: ref84 doi: 10.21105/joss.00819 – ident: ref38 doi: 10.1088/0953-8984/1/19/001 – ident: ref113 doi: 10.1038/s41467-021-25355-3 – ident: ref43 doi: 10.1103/PhysRevLett.125.120502 – ident: ref94 doi: 10.1103/PhysRevB.104.195102 – ident: ref42 doi: 10.1103/PhysRevLett.125.160503 – ident: ref16 doi: 10.1038/s41534-019-0217-0 – ident: ref27 doi: 10.1103/PhysRevA.101.032310 – ident: ref54 doi: 10.1103/PhysRevX.5.021026 – ident: ref51 doi: 10.1007/978-3-031-03998-0_5 – ident: ref67 doi: 10.1007/978-3-030-41265-4 – ident: ref91 doi: 10.1103/PRXQuantum.2.040326 – ident: ref66 doi: 10.1016/j.aop.2010.09.012 – ident: ref56 doi: 10.1103/PhysRevResearch.5.013190 – ident: ref98 doi: 10.1080/00018732.2021.1876991 – ident: ref53 doi: 10.1103/PhysRevLett.95.010501 – ident: ref69 doi: 10.1142/S0219749905001456 – ident: ref17 doi: 10.1038/s41534-022-00527-1 – ident: ref22 doi: 10.1103/RevModPhys.71.1253 – ident: ref31 doi: 10.1103/PhysRevA.106.022414 – ident: ref117 doi: 10.1016/j.physrep.2021.08.003 – ident: ref96 doi: 10.1103/PhysRevB.98.125431 – ident: ref25 doi: 10.1103/RevModPhys.93.045003 – ident: ref121 doi: 10.1088/1751-8121/ac6bd0 – ident: ref11 doi: 10.1126/sciadv.abm7652 – ident: ref103 doi: 10.1038/nphys4323 – ident: ref44 doi: 10.1103/PhysRevResearch.4.L022020 – ident: ref119 doi: 10.1103/PhysRevB.102.125112 – ident: ref18 doi: 10.1103/PhysRevLett.129.140502 – ident: ref6 doi: 10.1103/RevModPhys.91.015005 – ident: ref82 doi: 10.1126/science.285.5432.1368 – ident: ref4 doi: 10.1126/science.aaf8834 – ident: ref105 doi: 10.1103/PhysRevB.102.081115 – ident: ref112 doi: 10.1103/PhysRevB.102.054303 – ident: ref85 doi: 10.1103/PhysRevLett.122.180501 – ident: ref71 doi: 10.1007/BFb0119591 – ident: ref74 doi: 10.1103/PhysRevA.93.032318 – ident: ref46 doi: 10.1103/PRXQuantum.2.017003 – ident: ref34 doi: 10.1103/physrevlett.131.110602 – ident: ref23 doi: 10.1103/PhysRevLett.94.170201 – ident: ref76 doi: 10.1103/PhysRevLett.127.120502 – ident: ref89 doi: 10.1109/TQE.2022.3174547 – ident: ref90 doi: 10.3390/e24020244 – ident: ref118 doi: 10.1088/1751-8121/abad76 – ident: ref108 doi: 10.1103/PhysRevResearch.2.033428 – ident: ref21 doi: 10.1126/science.abi8794 – ident: ref100 doi: 10.1103/PhysRevLett.128.010402 – ident: ref97 doi: 10.1103/PhysRevB.98.094434 – ident: ref9 doi: 10.1126/science.abe8770 – ident: ref29 doi: 10.1103/PRXQuantum.2.010342 – ident: ref49 doi: 10.1103/PhysRevLett.86.5188 – ident: ref65 doi: 10.5281/zenodo.2573505 – ident: ref72 doi: 10.1038/s41598-018-23764-x – ident: ref73 doi: 10.1103/PRXQuantum.3.020342 – ident: ref58 doi: 10.1103/PhysRevB.102.085117 |
| SSID | ssj0002119165 |
| Score | 2.4290214 |
| Snippet | The AKLT state is the ground state of an isotropic quantum Heisenberg spin-1 model. It exhibits an excitation gap and an exponentially decaying correlation... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 170 |
| Title | High-fidelity realization of the AKLT state on a NISQ-era quantum processor |
| URI | https://doaj.org/article/be5108ceb2184e09b57daa323bff1c84 |
| Volume | 15 |
| WOSCitedRecordID | wos001122874400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Journals customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFLyIP3H-Igev6ZqlaZPjlA1lcyhO2K3kJwhzm93m0b_dl7aO3rx46SE0oXwvab4H730fQrdZlgnmnCJd7SFBETYhkseKQCLGmKfS2sq1ZJSNx2I6lc8Nq69QE1bJA1fAdbSDXSMMJICQi7hYap5ZpViXae-pEaUSaJzJRjIV_sGlblnKq5ad4F0tOnBWgv9tKKyMKI-SiAaD4sZl1NDsLy-XwSE6qFkh7lVfc4R23PwY7ZXVmWZ1goahGoP4oEgFpBkDz5vV7ZN44TFQONwbjia4bA7CMKjw-PH1hbhC4c8NQLf5wMuqIWBRnKK3QX9y_0BqFwRiWJquSSqkYFpaIeE6A74ElN5y72LqfWK0Zb5rVZwqqjPnRApgW8CIWRtLJxMHbOkMteaLuTtH2Iiu5doo47lNNBXCuVQzC0BRbWH1Nkp-4chNLREenCpmOaQKJYp5A8Wc8jzJAcU2irbTlpVGxl8T7gLW25eDxHU5AIHP68DnfwX-4j8WuUT7wT--qs67Qq11sXHXaNd8rd9XxU25p-D59N3_ARbo1Y4 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fidelity+realization+of+the+AKLT+state+on+a+NISQ-era+quantum+processor&rft.jtitle=SciPost+physics&rft.au=Chen%2C+Tianqi&rft.au=Shen%2C+Ruizhe&rft.au=Lee%2C+Ching+Hua&rft.au=Yang%2C+Bo&rft.date=2023-10-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=15&rft.issue=4&rft_id=info:doi/10.21468%2FSciPostPhys.15.4.170&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_15_4_170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |