On pseudo-convex partitions of a planar point set

Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics Ročník 313; číslo 21; s. 2401 - 2408
Hlavní autori: Bhattacharya, Bhaswar B., Das, Sandip
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2013
Predmet:
ISSN:0012-365X, 1872-681X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Aichholzer et al. [O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics 23 (2007) 481–507] introduced the notion of pseudo-convex partitioning of planar point sets and proved that the pseudo-convex partition number ψ(n) satisfies 34⌊n4⌋≤ψ(n)≤⌈n4⌉. In this paper we prove that ψ(13)=3, which improves the upper bound on ψ(n) to ⌈3n13⌉, thus answering a question posed by Aichholzer et al. in the same paper.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2013.07.007