Reinforced Galton–Watson processes I: Malthusian exponents

In a reinforced Galton–Watson process with reproduction law ν$$ \boldsymbol{\nu} $$ and memory parameter q∈(0,1)$$ q\in \left(0,1\right) $$, the number of children of a typical individual either, with probability q$$ q $$, repeats that of one of its forebears picked uniformly at random, or, with com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Random structures & algorithms Ročník 65; číslo 2; s. 387 - 410
Hlavní autoři: Bertoin, Jean, Mallein, Bastien
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.09.2024
Wiley Subscription Services, Inc
Wiley
Témata:
ISSN:1042-9832, 1098-2418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In a reinforced Galton–Watson process with reproduction law ν$$ \boldsymbol{\nu} $$ and memory parameter q∈(0,1)$$ q\in \left(0,1\right) $$, the number of children of a typical individual either, with probability q$$ q $$, repeats that of one of its forebears picked uniformly at random, or, with complementary probability 1−q$$ 1-q $$, is given by an independent sample from ν$$ \boldsymbol{\nu} $$. We estimate the average size of the population at a large generation, and in particular, we determine explicitly the Malthusian growth rate in terms of ν$$ \boldsymbol{\nu} $$ and q$$ q $$. Our approach via the analysis of transport equations owes much to works by Flajolet and co‐authors.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21219