Reinforced Galton–Watson processes I: Malthusian exponents
In a reinforced Galton–Watson process with reproduction law ν$$ \boldsymbol{\nu} $$ and memory parameter q∈(0,1)$$ q\in \left(0,1\right) $$, the number of children of a typical individual either, with probability q$$ q $$, repeats that of one of its forebears picked uniformly at random, or, with com...
Uloženo v:
| Vydáno v: | Random structures & algorithms Ročník 65; číslo 2; s. 387 - 410 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
John Wiley & Sons, Inc
01.09.2024
Wiley Subscription Services, Inc Wiley |
| Témata: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In a reinforced Galton–Watson process with reproduction law ν$$ \boldsymbol{\nu} $$ and memory parameter q∈(0,1)$$ q\in \left(0,1\right) $$, the number of children of a typical individual either, with probability q$$ q $$, repeats that of one of its forebears picked uniformly at random, or, with complementary probability 1−q$$ 1-q $$, is given by an independent sample from ν$$ \boldsymbol{\nu} $$. We estimate the average size of the population at a large generation, and in particular, we determine explicitly the Malthusian growth rate in terms of ν$$ \boldsymbol{\nu} $$ and q$$ q $$. Our approach via the analysis of transport equations owes much to works by Flajolet and co‐authors. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1042-9832 1098-2418 |
| DOI: | 10.1002/rsa.21219 |