Approximate stochastic dynamic programming for hydroelectric production planning

•A novel approximate stochastic dynamic programming approach is presented.•The state space is partitioned into simplices.•The value function is evaluated over the vertices of the simplices.•Bounds on the true value function are used to refine the partition.•The methodology is experimented with simul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 262; číslo 2; s. 586 - 601
Hlavní autoři: Zéphyr, Luckny, Lang, Pascal, Lamond, Bernard F., Côté, Pascal
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 16.10.2017
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•A novel approximate stochastic dynamic programming approach is presented.•The state space is partitioned into simplices.•The value function is evaluated over the vertices of the simplices.•Bounds on the true value function are used to refine the partition.•The methodology is experimented with simulated data and on a real hydropower system. This paper presents a novel approach for approximate stochastic dynamic programming (ASDP) over a continuous state space when the optimization phase has a near-convex structure. The approach entails a simplicial partitioning of the state space. Bounds on the true value function are used to refine the partition. We also provide analytic formulae for the computation of the expectation of the value function in the “uni-basin” case where natural inflows are strongly correlated. The approach is experimented on several configurations of hydro-energy systems. It is also tested against actual industrial data.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2017.03.050