Boosting algorithms for predicting end-point temperature in BOF steelmaking using big industrial datasets Boosting algorithms for predicting end-point temperature in BOF steelmaking using big industrial datasets

The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace steelmaking process, addressing gaps in the field, particularly large-scale dataset sizes and the underutilization of boosting algorithms. Utilizing a substantial dataset containing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international Jg. 32; H. 7; S. 1856 - 1868
Hauptverfasser: Zhang, Jian-bo, Khaksar Ghalati, Maryam, Fu, Jun, Yang, Xiao-an, El-Fallah, G.M.A.M., Dong, Hong-biao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Nature Singapore 01.07.2025
Springer Nature B.V
Schlagworte:
ISSN:1006-706X, 2210-3988
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!