Boosting algorithms for predicting end-point temperature in BOF steelmaking using big industrial datasets Boosting algorithms for predicting end-point temperature in BOF steelmaking using big industrial datasets
The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace steelmaking process, addressing gaps in the field, particularly large-scale dataset sizes and the underutilization of boosting algorithms. Utilizing a substantial dataset containing...
Gespeichert in:
| Veröffentlicht in: | Journal of iron and steel research, international Jg. 32; H. 7; S. 1856 - 1868 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Nature Singapore
01.07.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1006-706X, 2210-3988 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!