Precast production scheduling using multi-objective genetic algorithms

► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations are considered. ► A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 38; H. 7; S. 8293 - 8302
Hauptverfasser: Ko, Chien-Ho, Wang, Shu-Fan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2011
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations are considered. ► A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. ► The performance of the proposed model is validated by using five case studies. ► The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. ► Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules. The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources. However, current practices in precast production scheduling are fairly basic, depending heavily on experience, thereby resulting in inefficient resource utilization and late delivery. Moreover, previous methods ignoring buffer size between stations typically induce unfeasible schedules. Certain computational techniques have been proven effective in scheduling. To enhance precast production scheduling, this research develops a multi-objective precast production scheduling model (MOPPSM). In the model, production resources and buffer size between stations are considered. A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. The performance of the proposed model is validated by using five case studies. The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules.
AbstractList The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources. However, current practices in precast production scheduling are fairly basic, depending heavily on experience, thereby resulting in inefficient resource utilization and late delivery. Moreover, previous methods ignoring buffer size between stations typically induce unfeasible schedules. Certain computational techniques have been proven effective in scheduling. To enhance precast production scheduling, this research develops a multi-objective precast production scheduling model (MOPPSM). In the model, production resources and buffer size between stations are considered. A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. The performance of the proposed model is validated by using five case studies. The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules.
► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations are considered. ► A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. ► The performance of the proposed model is validated by using five case studies. ► The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. ► Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules. The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources. However, current practices in precast production scheduling are fairly basic, depending heavily on experience, thereby resulting in inefficient resource utilization and late delivery. Moreover, previous methods ignoring buffer size between stations typically induce unfeasible schedules. Certain computational techniques have been proven effective in scheduling. To enhance precast production scheduling, this research develops a multi-objective precast production scheduling model (MOPPSM). In the model, production resources and buffer size between stations are considered. A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. The performance of the proposed model is validated by using five case studies. The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules.
Author Ko, Chien-Ho
Wang, Shu-Fan
Author_xml – sequence: 1
  givenname: Chien-Ho
  surname: Ko
  fullname: Ko, Chien-Ho
  email: fpecount@yahoo.com.tw
– sequence: 2
  givenname: Shu-Fan
  surname: Wang
  fullname: Wang, Shu-Fan
BookMark eNp9kT1PwzAQhi0EEm3hDzBlgyXBjhPblVhQRQGpEgwwW459aR3lo9hOEf8eR2ViqHQ6L-9z8j03R-f90ANCNwRnBBN232Tgv1WWY0IyPBU9QzMiOE0ZX9JzNMPLkqcF4cUlmnvfYEw4xnyG1u8OtPIh2bvBjDrYoU-83oEZW9tvk9FPvRvbYNOhaiAGDpBsoYdgdaLa7eBs2HX-Cl3UqvVw_fcu0Of66WP1km7enl9Xj5tUU1aGFFhJRM1qxQQuaVVVHJgyeS5Al1AZseRFzXNWaGYqbCA3OZgKqNaY16rIFV2g2-Pc-N2vEXyQnfUa2lb1MIxeCrYUBeZlGZN3J5Nxf4KjoKhqgcQxqt3gvYNaahvUpCI4ZVtJsJwky0ZOkuUkWeKpaETzf-je2U65n9PQwxGCaOpgwUmvLfQajI3HCNIM9hT-C5kdme0
CitedBy_id crossref_primary_10_1016_j_autcon_2023_104770
crossref_primary_10_1080_00207543_2022_2057254
crossref_primary_10_1038_s41598_025_02837_8
crossref_primary_10_1061__ASCE_CO_1943_7862_0001976
crossref_primary_10_1155_2020_3849561
crossref_primary_10_1080_00207543_2014_884732
crossref_primary_10_1016_j_autcon_2024_105945
crossref_primary_10_1016_j_cor_2020_105204
crossref_primary_10_1007_s00500_018_3258_y
crossref_primary_10_1016_j_autcon_2023_104851
crossref_primary_10_1007_s00500_018_3273_z
crossref_primary_10_1016_j_autcon_2022_104726
crossref_primary_10_1016_j_amc_2013_03_099
crossref_primary_10_1088_1757_899X_471_11_112083
crossref_primary_10_3390_buildings15020187
crossref_primary_10_1155_2013_474872
crossref_primary_10_1007_s40534_013_0010_2
crossref_primary_10_1016_j_eswa_2025_129234
crossref_primary_10_1016_j_jclepro_2019_05_229
crossref_primary_10_1080_0305215X_2024_2423188
crossref_primary_10_1007_s11804_015_1292_z
crossref_primary_10_1016_j_asoc_2020_106204
crossref_primary_10_1080_00207543_2013_795250
crossref_primary_10_1038_s41598_023_42374_w
crossref_primary_10_3390_agriculture10010003
crossref_primary_10_1016_j_cie_2023_109518
crossref_primary_10_1016_j_autcon_2024_105712
crossref_primary_10_1111_exsy_12533
crossref_primary_10_3390_su10061807
crossref_primary_10_3390_su9112069
crossref_primary_10_1016_j_autcon_2016_08_021
crossref_primary_10_1109_TII_2021_3128405
crossref_primary_10_1061__ASCE_CP_1943_5487_0000667
crossref_primary_10_1080_15623599_2024_2365064
crossref_primary_10_1061__ASCE_CO_1943_7862_0001556
crossref_primary_10_1108_ECAM_03_2025_0429
crossref_primary_10_1016_j_cie_2024_110017
crossref_primary_10_1108_ECAM_09_2022_0871
crossref_primary_10_1016_j_autcon_2017_10_026
crossref_primary_10_1016_j_jclepro_2023_137054
crossref_primary_10_3390_pr8121593
crossref_primary_10_1016_j_compfluid_2014_12_004
crossref_primary_10_1016_j_autcon_2023_104952
crossref_primary_10_1016_j_autcon_2021_103581
crossref_primary_10_1016_j_autcon_2023_104755
crossref_primary_10_1061_JCEMD4_COENG_14393
crossref_primary_10_1016_j_cie_2024_110173
crossref_primary_10_1007_s11750_020_00589_4
crossref_primary_10_1016_j_autcon_2017_08_013
crossref_primary_10_1061_JCEMD4_COENG_15995
crossref_primary_10_1016_j_engappai_2023_107163
crossref_primary_10_1016_j_jcde_2018_04_001
crossref_primary_10_1080_0305215X_2024_2366486
crossref_primary_10_1016_j_inffus_2024_102423
crossref_primary_10_1016_j_autcon_2022_104201
crossref_primary_10_1080_00207543_2019_1571687
crossref_primary_10_1080_0305215X_2016_1141204
crossref_primary_10_1016_j_autcon_2017_03_016
crossref_primary_10_1016_j_autcon_2021_103575
crossref_primary_10_1016_j_autcon_2016_08_001
crossref_primary_10_3390_su12219266
crossref_primary_10_1016_j_jclepro_2017_12_188
crossref_primary_10_3846_jcem_2022_16454
crossref_primary_10_1016_j_autcon_2014_08_004
crossref_primary_10_1016_j_engappai_2014_07_013
crossref_primary_10_1016_j_jclepro_2023_138406
crossref_primary_10_1007_s11356_024_31859_4
crossref_primary_10_1016_j_autcon_2016_08_007
crossref_primary_10_1109_TNNLS_2022_3217318
Cites_doi 10.1162/evco.1995.3.1.1
10.1109/WSC.1998.745989
10.1016/j.ejor.2005.12.014
10.15554/pcij.01012006.62.71
10.1016/S0925-5273(99)00104-8
10.1007/s00158-005-0557-6
10.1287/mnsc.16.10.B630
10.1007/s11269-005-9011-1
10.1080/0144619042000287732
10.1016/S0926-5805(01)00083-8
10.1016/S0305-0548(02)00059-X
10.1016/0360-1323(94)00039-U
10.1016/0965-9978(95)00096-8
10.1080/00207540600847152
10.1016/j.ijpe.2005.08.002
10.1061/(ASCE)0733-9364(2004)130:6(780)
10.1057/jors.1971.18
10.1016/j.jher.2008.10.001
10.1016/j.engappai.2006.01.010
10.1061/(ASCE)0733-9364(2001)127:4(270)
10.1057/jors.1965.8
10.1061/(ASCE)0733-9364(2002)128:6(513)
10.1504/IJISTA.2007.011574
10.1016/j.cie.2006.01.002
10.1002/nav.20000
10.1109/ICEC.1995.489161
10.1029/98WR02368
10.1080/00207540500103821
10.1016/0360-1323(93)90009-R
10.1109/5326.704576
10.1109/TSMC.1986.289288
ContentType Journal Article
Copyright 2011
Copyright_xml – notice: 2011
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2011.01.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 8302
ExternalDocumentID 10_1016_j_eswa_2011_01_013
S0957417411000339
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-e6518f6fa68053bbb7e6ad228ec5ebd8974f7264c6db0de2d2edbe3cc07fa42a3
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000289047700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Thu Oct 02 07:12:29 EDT 2025
Sun Nov 09 12:13:27 EST 2025
Sat Nov 29 04:44:23 EST 2025
Tue Nov 18 22:31:01 EST 2025
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Buffer
Multi-objective genetic algorithms
Scheduling
Precast production
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-e6518f6fa68053bbb7e6ad228ec5ebd8974f7264c6db0de2d2edbe3cc07fa42a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1701087301
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_869840755
proquest_miscellaneous_1701087301
crossref_citationtrail_10_1016_j_eswa_2011_01_013
crossref_primary_10_1016_j_eswa_2011_01_013
elsevier_sciencedirect_doi_10_1016_j_eswa_2011_01_013
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dawood, Neale (b0065) 1993; 28
Caraffa, Ianes, Bagchi, Sriskandarajah (b0045) 2001; 70
Leu, Hwang (b0130) 2002; 11
Dawood (b0070) 1995; 30
Spears, De Jong (b0210) 1991
Benjaoran, Dawood, Hobbs (b0025) 2005; 23
Lee, Lee, Tan (b0120) 2007; 177
Ko, C. H. (2002). Evolutionary Fuzzy Neural Inference Model (EFNIM) for Decision-Making in Construction Management. PhD Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
Schaffer, J.D. (1985). Multi-objective optimization with vector evaluated genetic algorithms. Proceedings of the 1st International Conference of Genetic Algorithms, 93–100.
Campbell, Dudek, Smith (b0040) 1970; 16
Goldberg (b0095) 1989
Pathumnakul, Egbelu (b0145) 2006; 103
(Vol. 2, pp. 1273–1277).
(pp. 284–294).
Sawik (b0170) 2007; 45
Ray, Ripley, Neal (b0160) 2006; 51
West (b0205) 2006; 72
Kaige, Murata, Ishibuchi (b0225) 2003; 1
Bulbul, Kaminsky, Yano (b0035) 2004; 51
Azamathullaa, Wub, Ghania, Narulkarc, Zakariaa, Changa (b0020) 2008; 2
Leu, Hwang (b0125) 2001; 127
Psarras (b0155) 2007; 2
Kim, Weck (b0115) 2006; 31
Gupta (b0105) 1971; 22
Dawood, N. N. (1993). Knowledge elicitation and dynamic scheduling using a simulation model: An application to the precast manufacturing process. In
Ph.D. Thesis. Nashville, TN: Department of Electrical Engineering, Vanderbilt University.
Afshin Mansouri (b0005) 2005; 43
Ishibuchi, Murata (b0110) 1998; 28
Mansouri (b0135) 2006; 50
(p. 73).
Murata, T., & Ishibuchi, H. (1995). MOGA: Multi-objective genetic algorithms. In
Palmer (b0150) 1965; 16
Chan, Hu (b0050) 2002; 128
Vern, K., & Gunal, A. (1998). Use of simulation for construction elements manufacturing. In
Tsao, Tommelein, Swanlund, Howell (b0195) 2004; 130
Augusto, Rabeau, Depince, Bennis (b0015) 2006; 19
Deb (b0080) 2009
Fonsecay, Flemingz (b0085) 1995; 3
Bennett, D. (2005).
Chan, Hu (b0215) 2002; 79
Grefenstette (b0100) 1986; 16
Dawood (b0075) 1996; 25
(pp. 646–650).
Coello, Lamont, Veldhuizen (b0055) 2007
Birkhauser.
Aly, Peralta (b0010) 1999; 35
Cochran, Horng, Fowler (b0220) 2003; 30
Schaffer, J. D. (1984).
Reddy, Kumar (b0165) 2006; 20
Gao, Y., Shi, L., & Yao, P. (2000). Study on multi-objective genetic algorithm. In
Schaffer, Caruna, Eshelman, Das (b0235) 1989
Dawood (10.1016/j.eswa.2011.01.013_b0075) 1996; 25
Ray (10.1016/j.eswa.2011.01.013_b0160) 2006; 51
Campbell (10.1016/j.eswa.2011.01.013_b0040) 1970; 16
10.1016/j.eswa.2011.01.013_b0030
Goldberg (10.1016/j.eswa.2011.01.013_b0095) 1989
Schaffer (10.1016/j.eswa.2011.01.013_b0235) 1989
Dawood (10.1016/j.eswa.2011.01.013_b0065) 1993; 28
Fonsecay (10.1016/j.eswa.2011.01.013_b0085) 1995; 3
Mansouri (10.1016/j.eswa.2011.01.013_b0135) 2006; 50
10.1016/j.eswa.2011.01.013_b0090
Spears (10.1016/j.eswa.2011.01.013_b0210) 1991
Kaige (10.1016/j.eswa.2011.01.013_b0225) 2003; 1
Leu (10.1016/j.eswa.2011.01.013_b0125) 2001; 127
Augusto (10.1016/j.eswa.2011.01.013_b0015) 2006; 19
Chan (10.1016/j.eswa.2011.01.013_b0215) 2002; 79
10.1016/j.eswa.2011.01.013_b0200
Lee (10.1016/j.eswa.2011.01.013_b0120) 2007; 177
Grefenstette (10.1016/j.eswa.2011.01.013_b0100) 1986; 16
10.1016/j.eswa.2011.01.013_b0185
West (10.1016/j.eswa.2011.01.013_b0205) 2006; 72
Ishibuchi (10.1016/j.eswa.2011.01.013_b0110) 1998; 28
Azamathullaa (10.1016/j.eswa.2011.01.013_b0020) 2008; 2
Leu (10.1016/j.eswa.2011.01.013_b0130) 2002; 11
Tsao (10.1016/j.eswa.2011.01.013_b0195) 2004; 130
Bulbul (10.1016/j.eswa.2011.01.013_b0035) 2004; 51
Deb (10.1016/j.eswa.2011.01.013_b0080) 2009
Gupta (10.1016/j.eswa.2011.01.013_b0105) 1971; 22
Coello (10.1016/j.eswa.2011.01.013_b0055) 2007
10.1016/j.eswa.2011.01.013_b0140
Cochran (10.1016/j.eswa.2011.01.013_b0220) 2003; 30
Reddy (10.1016/j.eswa.2011.01.013_b0165) 2006; 20
10.1016/j.eswa.2011.01.013_b0060
Psarras (10.1016/j.eswa.2011.01.013_b0155) 2007; 2
Chan (10.1016/j.eswa.2011.01.013_b0050) 2002; 128
Aly (10.1016/j.eswa.2011.01.013_b0010) 1999; 35
Palmer (10.1016/j.eswa.2011.01.013_b0150) 1965; 16
Caraffa (10.1016/j.eswa.2011.01.013_b0045) 2001; 70
10.1016/j.eswa.2011.01.013_b0230
Sawik (10.1016/j.eswa.2011.01.013_b0170) 2007; 45
10.1016/j.eswa.2011.01.013_b0175
Kim (10.1016/j.eswa.2011.01.013_b0115) 2006; 31
Dawood (10.1016/j.eswa.2011.01.013_b0070) 1995; 30
Benjaoran (10.1016/j.eswa.2011.01.013_b0025) 2005; 23
Pathumnakul (10.1016/j.eswa.2011.01.013_b0145) 2006; 103
Afshin Mansouri (10.1016/j.eswa.2011.01.013_b0005) 2005; 43
References_xml – volume: 20
  start-page: 861
  year: 2006
  end-page: 878
  ident: b0165
  article-title: Optimal reservoir operation using multi-objective evolutionary algorithm
  publication-title: Water Resources Management
– volume: 103
  start-page: 230
  year: 2006
  end-page: 245
  ident: b0145
  article-title: An algorithm for minimizing weighted earliness penalty in assembly job shops
  publication-title: International Journal of Production Economics
– volume: 30
  start-page: 197
  year: 1995
  end-page: 207
  ident: b0070
  article-title: Scheduling in the precast concrete industry using the simulation modelling approach
  publication-title: Journal of Building and Environment
– reference: Schaffer, J. D. (1984).
– year: 2009
  ident: b0080
  article-title: Multi-objective optimization using evolutionary algorithms
– reference: Schaffer, J.D. (1985). Multi-objective optimization with vector evaluated genetic algorithms. Proceedings of the 1st International Conference of Genetic Algorithms, 93–100.
– reference: Gao, Y., Shi, L., & Yao, P. (2000). Study on multi-objective genetic algorithm. In
– reference: Ko, C. H. (2002). Evolutionary Fuzzy Neural Inference Model (EFNIM) for Decision-Making in Construction Management. PhD Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
– reference: Vern, K., & Gunal, A. (1998). Use of simulation for construction elements manufacturing. In
– year: 1989
  ident: b0095
  article-title: Genetic algorithms in search, optimization and machine learning
– volume: 25
  start-page: 215
  year: 1996
  end-page: 223
  ident: b0075
  article-title: A simulation model for eliciting scheduling knowledge: An application to the precast manufacturing process
  publication-title: Journal of Advances in Engineering Software
– volume: 16
  start-page: 630
  year: 1970
  end-page: 637
  ident: b0040
  article-title: A heuristic algorithm for the
  publication-title: Management Science
– volume: 177
  start-page: 1948
  year: 2007
  end-page: 1968
  ident: b0120
  article-title: A multi-objective genetic algorithm for robust flight scheduling using simulation
  publication-title: European Journal of Operational Research
– year: 1991
  ident: b0210
  article-title: An analysis of multi-point crossover
  publication-title: Foundations of genetic algorithms
– volume: 130
  start-page: 780
  year: 2004
  end-page: 789
  ident: b0195
  article-title: Work structuring to achieve integrated product-process design
  publication-title: Journal of Construction Engineering and Management
– volume: 23
  start-page: 93
  year: 2005
  end-page: 105
  ident: b0025
  article-title: Flowshop scheduling model for bespoke precast concrete production planning
  publication-title: Journal of Construction Management and Economics
– volume: 16
  start-page: 101
  year: 1965
  end-page: 107
  ident: b0150
  article-title: Sequencing jobs through a multi-stage process in the minimum total time – A quick method of obtaining a near optimum
  publication-title: Operations Research Quarterly
– volume: 28
  start-page: 392
  year: 1998
  end-page: 403
  ident: b0110
  article-title: Multi-objective genetic local search algorithm and its applications to flowshop scheduling
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– year: 2007
  ident: b0055
  article-title: Evolutionary algorithms for solving multi-objective problems
– reference: . Ph.D. Thesis. Nashville, TN: Department of Electrical Engineering, Vanderbilt University.
– reference: Bennett, D. (2005).
– volume: 16
  start-page: 122
  year: 1986
  end-page: 128
  ident: b0100
  article-title: Optimization of control parameters for genetic algorithms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– reference: . Birkhauser.
– volume: 19
  start-page: 501
  year: 2006
  end-page: 510
  ident: b0015
  article-title: Multi-objective genetic algorithms: A way to improve the convergence rate
  publication-title: Engineering Applications of Artificial Intelligence
– reference: (pp. 284–294).
– volume: 50
  start-page: 105
  year: 2006
  end-page: 119
  ident: b0135
  article-title: A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain
  publication-title: Computers and Industrial Engineering
– volume: 28
  start-page: 81
  year: 1993
  end-page: 95
  ident: b0065
  article-title: Capacity planning model for precast concrete building products
  publication-title: Journal of Building and Environment
– volume: 51
  start-page: 62
  year: 2006
  end-page: 71
  ident: b0160
  article-title: Lean manufacturing – A systematic approach to improving productivity in the precast concrete industry
  publication-title: PCI Journal
– reference: (pp. 646–650).
– reference: Dawood, N. N. (1993). Knowledge elicitation and dynamic scheduling using a simulation model: An application to the precast manufacturing process. In
– reference: Murata, T., & Ishibuchi, H. (1995). MOGA: Multi-objective genetic algorithms. In
– volume: 128
  start-page: 513
  year: 2002
  end-page: 521
  ident: b0050
  article-title: Constraint programming approach to precast production scheduling
  publication-title: Journal of Construction Engineering and Management
– volume: 2
  start-page: 172
  year: 2008
  end-page: 181
  ident: b0020
  article-title: Comparison between genetic algorithm and linear programming approach for real time operation
  publication-title: Journal of Hydro-Environment Research
– volume: 70
  start-page: 101
  year: 2001
  end-page: 115
  ident: b0045
  article-title: Minimizing makespan in a blocking flowshop using genetic algorithms
  publication-title: International Journal of Production Economics
– volume: 35
  start-page: 2523
  year: 1999
  end-page: 2532
  ident: b0010
  article-title: Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm
  publication-title: Water Resources Research
– volume: 79
  start-page: 1605
  year: 2002
  end-page: 1616
  ident: b0215
  article-title: Production scheduling for precast plants using a flow shop sequencing model
  publication-title: Journal of Computing in Civil Engineering, ASCE
– volume: 45
  start-page: 2629
  year: 2007
  end-page: 2653
  ident: b0170
  article-title: Multi-objective master production scheduling in make-to-order manufacturing
  publication-title: International Journal of Production Research
– volume: 22
  start-page: 39
  year: 1971
  end-page: 47
  ident: b0105
  article-title: A functional heuristic algorithm for the flowshop scheduling problem
  publication-title: Operational Research Quarterly
– volume: 43
  start-page: 3163
  year: 2005
  end-page: 3180
  ident: b0005
  article-title: Coordination of set-ups between two stages of a supply chain using multi-objective genetic algorithms
  publication-title: International Journal of Production Research
– volume: 51
  start-page: 407
  year: 2004
  end-page: 445
  ident: b0035
  article-title: Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs
  publication-title: Naval Research Logistics
– volume: 31
  start-page: 105
  year: 2006
  end-page: 116
  ident: b0115
  article-title: Adaptive weighted sum method for multiobjective optimization: A new method for Pareto
  publication-title: Structural and Multidisciplinary Optimization
– volume: 2
  start-page: 58
  year: 2007
  end-page: 76
  ident: b0155
  article-title: GA-based decision support systems in production scheduling
  publication-title: International Journal of Intelligent Systems Technologies and Applications
– volume: 11
  start-page: 439
  year: 2002
  end-page: 452
  ident: b0130
  article-title: GA-based resource-constrained flow-shop scheduling model for mixed precast production
  publication-title: Automation in Construction
– volume: 127
  start-page: 270
  year: 2001
  end-page: 280
  ident: b0125
  article-title: Optimal repetitive scheduling model with shareable resource constraint
  publication-title: Journal of Construction Engineering and Management
– volume: 1
  start-page: 14
  year: 2003
  end-page: 19
  ident: b0225
  article-title: Performance evaluation of memetic EMO algorithms using dominance relation-based replacement rules on MOO test problem
  publication-title: IEEE International Conference on System, Man and Cybernetics
– start-page: 51
  year: 1989
  end-page: 60
  ident: b0235
  article-title: A study of control parameters affecting online performance of genetic algorithms for function optimization
  publication-title: Proceedings of the third international conference on genetic algorithms and their applications
– volume: 30
  start-page: 1087
  year: 2003
  end-page: 1102
  ident: b0220
  article-title: A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines
  publication-title: Computers and Operations Research
– volume: 72
  start-page: 46
  year: 2006
  end-page: 52
  ident: b0205
  article-title: Flexible fabric molds for precast trusses
  publication-title: Concrete Precasting Plant and Technology
– reference: , (Vol. 2, pp. 1273–1277).
– volume: 3
  start-page: 1
  year: 1995
  end-page: 16
  ident: b0085
  article-title: An overview of evolutionary algorithms in multiobjective optimization
  publication-title: Evolutionary Computation
– reference: (p. 73).
– volume: 3
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.eswa.2011.01.013_b0085
  article-title: An overview of evolutionary algorithms in multiobjective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1995.3.1.1
– ident: 10.1016/j.eswa.2011.01.013_b0200
  doi: 10.1109/WSC.1998.745989
– volume: 177
  start-page: 1948
  year: 2007
  ident: 10.1016/j.eswa.2011.01.013_b0120
  article-title: A multi-objective genetic algorithm for robust flight scheduling using simulation
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.12.014
– volume: 51
  start-page: 62
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0160
  article-title: Lean manufacturing – A systematic approach to improving productivity in the precast concrete industry
  publication-title: PCI Journal
  doi: 10.15554/pcij.01012006.62.71
– volume: 70
  start-page: 101
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2011.01.013_b0045
  article-title: Minimizing makespan in a blocking flowshop using genetic algorithms
  publication-title: International Journal of Production Economics
  doi: 10.1016/S0925-5273(99)00104-8
– year: 2007
  ident: 10.1016/j.eswa.2011.01.013_b0055
– volume: 31
  start-page: 105
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0115
  article-title: Adaptive weighted sum method for multiobjective optimization: A new method for Pareto
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-005-0557-6
– volume: 16
  start-page: 630
  year: 1970
  ident: 10.1016/j.eswa.2011.01.013_b0040
  article-title: A heuristic algorithm for the n job, m machine sequencing problem
  publication-title: Management Science
  doi: 10.1287/mnsc.16.10.B630
– volume: 20
  start-page: 861
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0165
  article-title: Optimal reservoir operation using multi-objective evolutionary algorithm
  publication-title: Water Resources Management
  doi: 10.1007/s11269-005-9011-1
– volume: 23
  start-page: 93
  year: 2005
  ident: 10.1016/j.eswa.2011.01.013_b0025
  article-title: Flowshop scheduling model for bespoke precast concrete production planning
  publication-title: Journal of Construction Management and Economics
  doi: 10.1080/0144619042000287732
– start-page: 51
  year: 1989
  ident: 10.1016/j.eswa.2011.01.013_b0235
  article-title: A study of control parameters affecting online performance of genetic algorithms for function optimization
– volume: 11
  start-page: 439
  year: 2002
  ident: 10.1016/j.eswa.2011.01.013_b0130
  article-title: GA-based resource-constrained flow-shop scheduling model for mixed precast production
  publication-title: Automation in Construction
  doi: 10.1016/S0926-5805(01)00083-8
– volume: 30
  start-page: 1087
  issue: 7
  year: 2003
  ident: 10.1016/j.eswa.2011.01.013_b0220
  article-title: A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(02)00059-X
– ident: 10.1016/j.eswa.2011.01.013_b0090
– volume: 30
  start-page: 197
  year: 1995
  ident: 10.1016/j.eswa.2011.01.013_b0070
  article-title: Scheduling in the precast concrete industry using the simulation modelling approach
  publication-title: Journal of Building and Environment
  doi: 10.1016/0360-1323(94)00039-U
– volume: 25
  start-page: 215
  year: 1996
  ident: 10.1016/j.eswa.2011.01.013_b0075
  article-title: A simulation model for eliciting scheduling knowledge: An application to the precast manufacturing process
  publication-title: Journal of Advances in Engineering Software
  doi: 10.1016/0965-9978(95)00096-8
– volume: 45
  start-page: 2629
  issue: 12
  year: 2007
  ident: 10.1016/j.eswa.2011.01.013_b0170
  article-title: Multi-objective master production scheduling in make-to-order manufacturing
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540600847152
– volume: 103
  start-page: 230
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0145
  article-title: An algorithm for minimizing weighted earliness penalty in assembly job shops
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2005.08.002
– volume: 130
  start-page: 780
  year: 2004
  ident: 10.1016/j.eswa.2011.01.013_b0195
  article-title: Work structuring to achieve integrated product-process design
  publication-title: Journal of Construction Engineering and Management
  doi: 10.1061/(ASCE)0733-9364(2004)130:6(780)
– volume: 22
  start-page: 39
  year: 1971
  ident: 10.1016/j.eswa.2011.01.013_b0105
  article-title: A functional heuristic algorithm for the flowshop scheduling problem
  publication-title: Operational Research Quarterly
  doi: 10.1057/jors.1971.18
– year: 1991
  ident: 10.1016/j.eswa.2011.01.013_b0210
– volume: 2
  start-page: 172
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2011.01.013_b0020
  article-title: Comparison between genetic algorithm and linear programming approach for real time operation
  publication-title: Journal of Hydro-Environment Research
  doi: 10.1016/j.jher.2008.10.001
– volume: 19
  start-page: 501
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0015
  article-title: Multi-objective genetic algorithms: A way to improve the convergence rate
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.01.010
– volume: 127
  start-page: 270
  year: 2001
  ident: 10.1016/j.eswa.2011.01.013_b0125
  article-title: Optimal repetitive scheduling model with shareable resource constraint
  publication-title: Journal of Construction Engineering and Management
  doi: 10.1061/(ASCE)0733-9364(2001)127:4(270)
– volume: 16
  start-page: 101
  year: 1965
  ident: 10.1016/j.eswa.2011.01.013_b0150
  article-title: Sequencing jobs through a multi-stage process in the minimum total time – A quick method of obtaining a near optimum
  publication-title: Operations Research Quarterly
  doi: 10.1057/jors.1965.8
– volume: 128
  start-page: 513
  year: 2002
  ident: 10.1016/j.eswa.2011.01.013_b0050
  article-title: Constraint programming approach to precast production scheduling
  publication-title: Journal of Construction Engineering and Management
  doi: 10.1061/(ASCE)0733-9364(2002)128:6(513)
– volume: 2
  start-page: 58
  year: 2007
  ident: 10.1016/j.eswa.2011.01.013_b0155
  article-title: GA-based decision support systems in production scheduling
  publication-title: International Journal of Intelligent Systems Technologies and Applications
  doi: 10.1504/IJISTA.2007.011574
– volume: 50
  start-page: 105
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0135
  article-title: A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2006.01.002
– ident: 10.1016/j.eswa.2011.01.013_b0175
– volume: 51
  start-page: 407
  year: 2004
  ident: 10.1016/j.eswa.2011.01.013_b0035
  article-title: Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs
  publication-title: Naval Research Logistics
  doi: 10.1002/nav.20000
– ident: 10.1016/j.eswa.2011.01.013_b0230
– ident: 10.1016/j.eswa.2011.01.013_b0140
  doi: 10.1109/ICEC.1995.489161
– volume: 79
  start-page: 1605
  issue: 17
  year: 2002
  ident: 10.1016/j.eswa.2011.01.013_b0215
  article-title: Production scheduling for precast plants using a flow shop sequencing model
  publication-title: Journal of Computing in Civil Engineering, ASCE
– volume: 35
  start-page: 2523
  issue: 8
  year: 1999
  ident: 10.1016/j.eswa.2011.01.013_b0010
  article-title: Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm
  publication-title: Water Resources Research
  doi: 10.1029/98WR02368
– volume: 72
  start-page: 46
  year: 2006
  ident: 10.1016/j.eswa.2011.01.013_b0205
  article-title: Flexible fabric molds for precast trusses
  publication-title: Concrete Precasting Plant and Technology
– ident: 10.1016/j.eswa.2011.01.013_b0060
– volume: 43
  start-page: 3163
  year: 2005
  ident: 10.1016/j.eswa.2011.01.013_b0005
  article-title: Coordination of set-ups between two stages of a supply chain using multi-objective genetic algorithms
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540500103821
– ident: 10.1016/j.eswa.2011.01.013_b0185
– ident: 10.1016/j.eswa.2011.01.013_b0030
– volume: 28
  start-page: 81
  year: 1993
  ident: 10.1016/j.eswa.2011.01.013_b0065
  article-title: Capacity planning model for precast concrete building products
  publication-title: Journal of Building and Environment
  doi: 10.1016/0360-1323(93)90009-R
– volume: 1
  start-page: 14
  year: 2003
  ident: 10.1016/j.eswa.2011.01.013_b0225
  article-title: Performance evaluation of memetic EMO algorithms using dominance relation-based replacement rules on MOO test problem
  publication-title: IEEE International Conference on System, Man and Cybernetics
– year: 1989
  ident: 10.1016/j.eswa.2011.01.013_b0095
– volume: 28
  start-page: 392
  year: 1998
  ident: 10.1016/j.eswa.2011.01.013_b0110
  article-title: Multi-objective genetic local search algorithm and its applications to flowshop scheduling
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/5326.704576
– volume: 16
  start-page: 122
  issue: 1
  year: 1986
  ident: 10.1016/j.eswa.2011.01.013_b0100
  article-title: Optimization of control parameters for genetic algorithms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1986.289288
– year: 2009
  ident: 10.1016/j.eswa.2011.01.013_b0080
SSID ssj0017007
Score 2.3204184
Snippet ► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations...
The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8293
SubjectTerms Buffer
Buffers
Delivery scheduling
Mathematical models
Multi-objective genetic algorithms
Optimization
Precast
Precast production
Production scheduling
Schedules
Scheduling
Searching
Stations
Title Precast production scheduling using multi-objective genetic algorithms
URI https://dx.doi.org/10.1016/j.eswa.2011.01.013
https://www.proquest.com/docview/1701087301
https://www.proquest.com/docview/869840755
Volume 38
WOSCitedRecordID wos000289047700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9swGBZZusMu-x7rvtBg7FI0bMuy5GMZCd0oWQ8p5CYkWVoagpMlTtefP8mS7JDRbjsMjAlGioOeN49evZ8AfDDYpIkwBpGUKpRLkiEpVIlKYUUaJ0rmKm-bTdDJhM1m5cVg0GXxXy9pXbObm3L9X6G2zyzYLnX2H-DuvtQ-sJ8t6PZuYbf3vwL-wnKY2DYu8qrypWFP7AnW7iht4vmutQ20YYRoJRee7lwfZd1Wbl1-X22umnkoYb7o4vT0pglFn2M63J7juyNtb3adW7ZAZ6veVB8s0vMdGgdZrHq7KY1mhmgvpChPfUudSJ2Y7YkI3eNBlvm-h3FPxW1a9e987U0Hi096-1OEeqruwv3uFD3yk298fHl-zqej2fTj-gdyfcOcfz00UbkHjjJKSjYER6dfRrOvnSeJJj5lPv78kDjlY_wOX3ubcnKwTbe6x_QxeBgODfDUg_0EDHT9FDyKDTlg4OdnYBywhz32sMcettjDA-xhwB722D8Hl-PR9PMZCo0ykMIFaZAuSMpMYUTBLKdKKakuRJVlTCuiZcXsmdFQq_mqopJJpbMq05XUWKmEGpFnAr8Aw3pV65cAVgSrJBd5ibHMSSokNoYIaRKVCSJKfAzSuEJchSryrpnJksdwwQV3q8rdqvLEXXbOSTdn7Wuo3DmaxIXnQQv02h23QnPnvPcRJW4p0vm9RK1Xuy13LQcS5rayYwBvGcOKkuVWfSav_jzkNXjQ_0PegGGz2em34L66bq62m3dBAH8B0nKYsA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precast+production+scheduling+using+multi-objective+genetic+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Ko%2C+Chien-Ho&rft.au=Wang%2C+Shu-Fan&rft.date=2011-07-01&rft.issn=0957-4174&rft.volume=38&rft.issue=7&rft.spage=8293&rft.epage=8302&rft_id=info:doi/10.1016%2Fj.eswa.2011.01.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon