Multiphase Transport Network Optimization: Mathematical Framework Integrating Resilience Quantification and Dynamic Algorithm Coupling
This study proposes a multi-dimensional urban transportation network optimization framework (MTNO-RQDC) to address structural failure risks from aging infrastructure and regional connectivity bottlenecks. Through dual-dataset validation using both the Baltimore road network and PeMS07 traffic flow d...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 13; číslo 13; s. 2061 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.07.2025
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This study proposes a multi-dimensional urban transportation network optimization framework (MTNO-RQDC) to address structural failure risks from aging infrastructure and regional connectivity bottlenecks. Through dual-dataset validation using both the Baltimore road network and PeMS07 traffic flow data, we first develop a traffic simulation model integrating Dijkstra’s algorithm with capacity-constrained allocation strategies for guiding reconstruction planning for the collapsed Francis Scott Key Bridge. Next, we create a dynamic adaptive public transit optimization model using an entropy weight-TOPSIS decision framework coupled with an improved simulated annealing algorithm (ISA-TS), achieving coordinated suburban–urban network optimization while maintaining 92.3% solution stability under simulated node failure conditions. The framework introduces three key innovations: (1) a dual-layer regional division model combining K-means geographical partitioning with spectral clustering functional zoning; (2) fault-tolerant network topology optimization demonstrated through 1000-epoch Monte Carlo failure simulations; (3) cross-dataset transferability validation showing 15.7% performance variance between Baltimore and PeMS07 environments. Experimental results demonstrate a 28.7% reduction in road network traffic variance (from 42,760 to 32,100), 22.4% improvement in public transit path redundancy, and 30.4–44.6% decrease in regional traffic load variance with minimal costs. Hyperparameter analysis reveals two optimal operational modes: rapid cooling (rate = 0.90) achieves 85% improvement within 50 epochs for emergency response, while slow cooling (rate = 0.99) yields 12.7% superior solutions for long-term planning. The framework establishes a new multi-objective paradigm balancing structural resilience, functional connectivity, and computational robustness for sustainable smart city transportation systems. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math13132061 |