CTVAE: Contrastive Tabular Variational Autoencoder for imbalance data CTVAE: Contrastive Tabular Variational Autoencoder for imbalance data

Class imbalance, where datasets often lack sufficient samples for minority classes, is a persistent challenge in machine learning. Existing solutions often generate synthetic data to mitigate this issue, but they typically struggle with complex data distributions, primarily because they focus on ove...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge and information systems Ročník 67; číslo 6; s. 5335 - 5354
Hlavní autoři: Wang, Alex X., Le, Minh Quang, Duong, Huu-Thanh, Van, Bay Nguyen, Nguyen, Binh P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.06.2025
Springer Nature B.V
Témata:
ISSN:0219-1377, 0219-3116
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Class imbalance, where datasets often lack sufficient samples for minority classes, is a persistent challenge in machine learning. Existing solutions often generate synthetic data to mitigate this issue, but they typically struggle with complex data distributions, primarily because they focus on oversampling the minority class while neglecting the relationships with the majority class. To overcome these limitations, we propose the Contrastive Tabular Variational Autoencoder (CTVAE), which integrates conditional Variational Autoencoders with contrastive learning techniques. CTVAE excels at generating high-quality synthetic samples that capture the intricate data distributions of both minority and majority classes. Additionally, it can be seamlessly integrated with variants of the Synthetic Minority Oversampling Technique (SMOTE) for enhanced effectiveness. Experimental results demonstrate that CTVAE substantially improves classification performance on imbalanced datasets, offering a more robust and holistic solution to the class imbalance problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-025-02377-7