Supervised autoencoder denoiser for non-stationarity in multi-session EEG-based BCI

Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs). In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific inform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering Jg. 22; H. 2
Hauptverfasser: Ofer, Avin, Ophir, Almagor, Yoav, Noah, Roman, Rosipal, Oren, Shriki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England IOP Publishing 01.04.2025
Schlagworte:
ISSN:1741-2560, 1741-2552, 1741-2552
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs). In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to ensure that the latent representations exclude session identity information and are optimized for subsequent classification. Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain adaptation challenges, outperforming both naïve cross-session and within-session methods. Our method eliminates the need for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of non-stationary brain components and other cognitive processes.
Bibliographie:JNE-108234.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1741-2560
1741-2552
1741-2552
DOI:10.1088/1741-2552/adc48e