A Class of Weighted Quantized Kernel Recursive Least Squares Algorithms

In this brief, a class of weighted quantized kernel recursive least squares (WQKRLS) algorithms is proposed to efficiently improve the performance of online applications. In the proposed WQKRLS, an online vector quantization with weighted outputs is incorporated into quantized kernel recursive least...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 64; číslo 6; s. 730 - 734
Hlavní autoři: Wang, Shiyuan, Wang, Wanli, Duan, Shukai
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this brief, a class of weighted quantized kernel recursive least squares (WQKRLS) algorithms is proposed to efficiently improve the performance of online applications. In the proposed WQKRLS, an online vector quantization with weighted outputs is incorporated into quantized kernel recursive least squares. The resulting desired outputs are smoothed by exponential weights. In addition, the members of the dictionary are updated by the steepest descent method for further performance improvement. Simulations illustrate the superior performance of the proposed WQKRLS.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2016.2603193