A Class of Weighted Quantized Kernel Recursive Least Squares Algorithms
In this brief, a class of weighted quantized kernel recursive least squares (WQKRLS) algorithms is proposed to efficiently improve the performance of online applications. In the proposed WQKRLS, an online vector quantization with weighted outputs is incorporated into quantized kernel recursive least...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems. II, Express briefs Ročník 64; číslo 6; s. 730 - 734 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1549-7747, 1558-3791 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this brief, a class of weighted quantized kernel recursive least squares (WQKRLS) algorithms is proposed to efficiently improve the performance of online applications. In the proposed WQKRLS, an online vector quantization with weighted outputs is incorporated into quantized kernel recursive least squares. The resulting desired outputs are smoothed by exponential weights. In addition, the members of the dictionary are updated by the steepest descent method for further performance improvement. Simulations illustrate the superior performance of the proposed WQKRLS. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2016.2603193 |