Numerical Analysis for a Class of Variational Integrators

In this paper, we study a geometric framework for second-order differential systems arising in classical and relativistic mechanics. For this class of systems, we derive necessary and sufficient conditions for their Lagrangian description. The main objectives of this work are to construct efficient...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 13; číslo 15; s. 2326
Hlavní autoři: Shen, Yihan, Sun, Yajuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2025
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study a geometric framework for second-order differential systems arising in classical and relativistic mechanics. For this class of systems, we derive necessary and sufficient conditions for their Lagrangian description. The main objectives of this work are to construct efficient structure-preserving variational integrators in a variational framework. To achieve this, we develop new variational integrators through Lagrangian splitting and prove their equivalence to composition methods. We display the superiority of the newly derived numerical methods for the Kepler problem and provide rigorous error estimates by analysing the Laplace–Runge–Lenz vector. The framework provides tools applicable to geometric numerical integration of both ordinary and partial differential equations.
AbstractList In this paper, we study a geometric framework for second-order differential systems arising in classical and relativistic mechanics. For this class of systems, we derive necessary and sufficient conditions for their Lagrangian description. The main objectives of this work are to construct efficient structure-preserving variational integrators in a variational framework. To achieve this, we develop new variational integrators through Lagrangian splitting and prove their equivalence to composition methods. We display the superiority of the newly derived numerical methods for the Kepler problem and provide rigorous error estimates by analysing the Laplace–Runge–Lenz vector. The framework provides tools applicable to geometric numerical integration of both ordinary and partial differential equations.
Audience Academic
Author Sun, Yajuan
Shen, Yihan
Author_xml – sequence: 1
  givenname: Yihan
  orcidid: 0009-0009-8000-6165
  surname: Shen
  fullname: Shen, Yihan
– sequence: 2
  givenname: Yajuan
  orcidid: 0000-0003-1599-600X
  surname: Sun
  fullname: Sun, Yajuan
BookMark eNpNUclOAzEMjVCRKKU3PmAkrrRkmWzHqmKpVMEFuEaeTFJSTSclmR769wSKEPbB1rP95GdfolEfe4fQNcFzxjS-28HwQRjhlFFxhsaUUjmTpTD6l1-gac5bXEwTpmo9Rvr5sHMpWOiqRQ_dMYdc-ZgqqJYd5FxFX71DCjCEWMrVqh_cJsEQU75C5x667Ka_cYLeHu5fl0-z9cvjarlYzywTfJiJRmHuQSjsG82AS2KpxrgFB40mvm2dVNxaz50jBNqGU4BGKcadFUq3nk3Q6sTbRtiafQo7SEcTIZgfIKaNgTQE2znT1kJQYRUR0tZFoqp53UgsgRBhnaSF6-bEtU_x8-DyYLbxkIqwbBgt95E1paJ0zU9dGyikofdxSGCLt24XbLm6DwVfKE5rpYXmZeD2NGBTzDk5_7cmweb7Oeb_c9gXuAyB_g
Cites_doi 10.1088/2058-6272/aac3d1
10.3934/jgm.2022014
10.1016/j.cpc.2019.04.003
10.1137/S0036142997329797
10.1007/978-3-642-01777-3
10.1063/1.1625418
10.1007/s00211-019-01093-z
10.1088/1751-8113/40/17/009
10.1090/S0002-9947-1941-0004740-5
10.1016/S0168-9274(97)00061-5
10.1007/978-3-642-86757-6
10.1137/20M1383835
10.1017/CBO9780511997136.003
10.1007/s00211-017-0896-4
10.1017/S096249290100006X
10.1007/978-1-4612-4350-2
10.1016/j.physd.2015.08.002
10.1007/s002200050505
10.1016/j.cnsns.2022.106646
10.1103/PhysRevLett.100.035006
10.1007/978-1-4757-2063-1
10.1119/1.15078
10.1016/S0375-9601(97)00003-0
10.1016/S0375-9601(02)00426-7
10.1007/978-3-030-01397-4_10
10.1137/23M1568946
10.1063/1.1316062
10.3934/jgm.2023010
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math13152326
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_d46626c8167c40918454b707a116ce72
A852489695
10_3390_math13152326
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c365t-6b805fa680fb93a571c2900daeab91fdde785ccf5ee11adb52aab8835ec689df3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001549418500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:35:53 EST 2025
Wed Aug 13 13:12:34 EDT 2025
Tue Nov 04 18:11:18 EST 2025
Sat Nov 29 07:12:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-6b805fa680fb93a571c2900daeab91fdde785ccf5ee11adb52aab8835ec689df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-8000-6165
0000-0003-1599-600X
OpenAccessLink https://doaj.org/article/d46626c8167c40918454b707a116ce72
PQID 3239074226
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_d46626c8167c40918454b707a116ce72
proquest_journals_3239074226
gale_infotracacademiconefile_A852489695
crossref_primary_10_3390_math13152326
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chin (ref_30) 1997; 226
Sun (ref_12) 2000; 41
Qin (ref_13) 2008; 100
Kozlov (ref_32) 2007; 40
Marsden (ref_11) 1998; 199
ref_34
ref_33
ref_10
Duruisseaux (ref_20) 2023; 15
McLachlan (ref_26) 2022; 14
Duruisseaux (ref_19) 2021; 43
(ref_4) 1887; 100
Douglas (ref_5) 1941; 50
Hairer (ref_15) 2020; 144
Sharma (ref_25) 2022; 114
Curtis (ref_36) 1987; 55
(ref_21) 1996; 10
Xiao (ref_18) 2018; 20
Xiao (ref_14) 2019; 241
Kraus (ref_17) 2015; 310
Hairer (ref_22) 1997; 25
ref_1
Marsden (ref_8) 2001; 10
ref_3
ref_2
Vermeeren (ref_24) 2017; 137
ref_29
ref_28
ref_27
Vermeeren (ref_35) 2018; Volume 267
Hairer (ref_16) 2023; 61
Minesaki (ref_31) 2002; 306
Reich (ref_23) 1999; 36
Dorodnitsyn (ref_9) 2004; 45
ref_7
ref_6
References_xml – volume: 20
  start-page: 110501
  year: 2018
  ident: ref_18
  article-title: Structure-preserving geometric particle-in-cell methods for Vlasov–Maxwell systems
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aac3d1
– volume: 14
  start-page: 447
  year: 2022
  ident: ref_26
  article-title: Backward error analysis for variational discretisations of PDEs
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2022014
– volume: 241
  start-page: 19
  year: 2019
  ident: ref_14
  article-title: Explicit high-order gauge-independent symplectic algorithms for relativistic charged particle dynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.04.003
– volume: 36
  start-page: 1549
  year: 1999
  ident: ref_23
  article-title: Backward error analysis for numerical integrators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997329797
– ident: ref_3
  doi: 10.1007/978-3-642-01777-3
– volume: 45
  start-page: 336
  year: 2004
  ident: ref_9
  article-title: Continuous symmetries of Lagrangians and exact solutions of discrete equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1625418
– volume: 144
  start-page: 699
  year: 2020
  ident: ref_15
  article-title: Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field
  publication-title: Numer. Math.
  doi: 10.1007/s00211-019-01093-z
– volume: 40
  start-page: 4529
  year: 2007
  ident: ref_32
  article-title: Conservative discretizations of the Kepler motion
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/40/17/009
– volume: 50
  start-page: 71
  year: 1941
  ident: ref_5
  article-title: Solution of the inverse problem of the calculus of variations
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1941-0004740-5
– volume: 25
  start-page: 219
  year: 1997
  ident: ref_22
  article-title: Variable time step integration with symplectic methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(97)00061-5
– ident: ref_1
– ident: ref_7
  doi: 10.1007/978-3-642-86757-6
– volume: 43
  start-page: A2949
  year: 2021
  ident: ref_19
  article-title: Adaptive Hamiltonian variational integrators and applications to symplectic accelerated optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1383835
– ident: ref_10
  doi: 10.1017/CBO9780511997136.003
– volume: 137
  start-page: 1001
  year: 2017
  ident: ref_24
  article-title: Modified equations for variational integrators
  publication-title: Numer. Math.
  doi: 10.1007/s00211-017-0896-4
– volume: 100
  start-page: 137
  year: 1887
  ident: ref_4
  article-title: Ueber die physikalische Bedeutung des Prinicips der kleinsten Wirkung
  publication-title: J. Reine Angew. Math.
– ident: ref_6
– volume: 10
  start-page: 357
  year: 2001
  ident: ref_8
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numer.
  doi: 10.1017/S096249290100006X
– ident: ref_34
  doi: 10.1007/978-1-4612-4350-2
– volume: 310
  start-page: 37
  year: 2015
  ident: ref_17
  article-title: Variational integrators for nonvariational partial differential equations
  publication-title: Phys. D
  doi: 10.1016/j.physd.2015.08.002
– ident: ref_29
– ident: ref_33
– ident: ref_27
– ident: ref_2
– volume: 199
  start-page: 351
  year: 1998
  ident: ref_11
  article-title: Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050505
– volume: 114
  start-page: 106646
  year: 2022
  ident: ref_25
  article-title: Performance assessment of energy-preserving, adaptive time-step variational integrators
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2022.106646
– volume: 100
  start-page: 035006
  year: 2008
  ident: ref_13
  article-title: Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.035006
– volume: 10
  start-page: 193
  year: 1996
  ident: ref_21
  article-title: Backward error analysis of symplectic integrators
  publication-title: Fields Inst. Commun.
– ident: ref_28
  doi: 10.1007/978-1-4757-2063-1
– volume: 55
  start-page: 627
  year: 1987
  ident: ref_36
  article-title: An expectation value formulation of the perturbed Kepler problem
  publication-title: Am. J. Phys.
  doi: 10.1119/1.15078
– volume: 226
  start-page: 344
  year: 1997
  ident: ref_30
  article-title: Symplectic integrators from composite operator factorizations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(97)00003-0
– volume: 306
  start-page: 127
  year: 2002
  ident: ref_31
  article-title: A new discretization of the Kepler motion which conserves the Runge-Lenz vector
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00426-7
– volume: Volume 267
  start-page: 333
  year: 2018
  ident: ref_35
  article-title: Numerical precession in variational discretizations of the Kepler problem
  publication-title: Discrete Mechanics, Geometric Integration and Lie–Butcher Series
  doi: 10.1007/978-3-030-01397-4_10
– volume: 61
  start-page: 2844
  year: 2023
  ident: ref_16
  article-title: Leapfrog methods for relativistic charged-particle dynamics
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/23M1568946
– volume: 41
  start-page: 7854
  year: 2000
  ident: ref_12
  article-title: Construction of multisymplectic schemes of any finite order for modified wave equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1316062
– volume: 15
  start-page: 224
  year: 2023
  ident: ref_20
  article-title: Time-adaptive Lagrangian variational integrators for accelerated optimization
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2023010
SSID ssj0000913849
Score 2.2994695
Snippet In this paper, we study a geometric framework for second-order differential systems arising in classical and relativistic mechanics. For this class of systems,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2326
SubjectTerms Analysis
Charged particles
Differential equations
Integrators
inverse variational problem
Kepler problem
Mechanics
modified Lagrangian
Noether’s theorem
Numerical analysis
Numerical integration
Numerical methods
Partial differential equations
variational integrator
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAHylMsLSgHECersR2_TlWpqEDAigOg3qyJYxcum5Js-f2Mvd6lF7hwTRzJmpfnG0--AXgZrY4Sdcv4wJF1kXPm-jaxMPCY0BgXYqHM_2iWS3t-7j7Xgttc2yq3MbEE6mEMuUZ-JIUsOE7o48ufLE-NyrerdYTGTbjFheDZzj8YtquxZM5L27lNv7uk748oC_zOJZ1ZMrMpXDuJCmH_38JyOWvO9v93l_fhXs0ym5ONWTyAG3H1EO5-2lG0zo_ALa82lzW0rBKTNJTANtiUOZnNmJpvhKNrrbB5X2klxml-DF_P3n45fcfqHAUWpFZrpnvbqoTatql3EpXhQbi2HTBi73iiAGesCiGpSKrCoVcCsbeUmsWgrRuSfAJ7q3EVn0KTOm6DUy4kTF1EJE2jVI7sgGAQWr6AV1uZ-ssNXYYnmJFl76_LfgFvssB3azLJdXkwThe--owfOk1wK1iuTSAYSlhUdb1pDXKuQzRiAa-zunx2xfWEAesfBbTVTGrlT6wSnXXaqQUcbtXlq4_O_o-unv379QHcEXnqb2n7O4S99XQVn8Pt8Gv9Y55eFJP7DVPX4Hw
  priority: 102
  providerName: ProQuest
Title Numerical Analysis for a Class of Variational Integrators
URI https://www.proquest.com/docview/3239074226
https://doaj.org/article/d46626c8167c40918454b707a116ce72
Volume 13
WOSCitedRecordID wos001549418500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED4EToZmCNI8EKepoaFBJiGiKL7GpLDRoLVh5IVkIk4UiXaxA9vJ2N_eIyUHXoouXThIHA7fiXf3SafvAL54LT1HWeSsYZhXnrHc1EXIXcN8QKWM80ky_4eaTPTTk5lujPqKPWGtPHAL3GVTSaq5nWZSOeIiREhEVatCIWPSeZWiL1U9G2QqxWDDuK5M2-nOiddfUv33k3HKVjzqKGzkoCTV_7eAnLLMaB_2uvIwu2rN-ghbfnYAu-N3bdXlIZjJa_uVhbZ1iiIZVZ4ZZmnAZTYP2SMR4O4lX3bT6UHMF8sjeBgN779-y7sBCLnjUqxyWetCBJS6CLXhKBRzpSmKBj3WhgWKTEoL54LwhDE2tSgRa001lXdSmybwY-jN5jN_AlmomHZGGBcwVB6RXIRcGHIg8RfUrA_na0jsS6tzYYkfROjsJnR9uI54ve-J6tTpAvnMdj6z__JZHy4i2jaeodUCHXa_ApCpUY3KXmlRVtpII_pwtnaI7Q7X0vKSJ0pfytP_Yc0n-FDGob6pq-8MeqvFq_8MO-5t9Wu5GMD29XAyvR2k54vW7yofxAbRu7j-HtL96c14-vwHcBjXPw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-CxiaYEcqDhFjePYsQ9VVT6qrrpdIVFQb2bi2NDLpiRbEH-K39ixkyy9wK0HrokVjTIvM_Oc8RuAV05Jx1FmKasZpoVjLNVV5lNbM-exLLV1UTJ_Vs7n6vRUf1iD3-NZmNBWOcbEGKjrxoY98h2e88jjcrl3_j0NU6PC39VxhEYPiyP36ydRtm53-o78u53nB-9P3h6mw1SB1HIplqmsVCY8SpX5SnMUJbO5zrIaHVaaefrcSyWs9cKR4VhXIkesFBUqzkqla8_puTfgZhGif2wV_Lja0wkam6rQfX89J3t3qOr8xjjlSB7UG65kvjgg4G9pIOa2g_v_21t5APeGKjrZ72H_ENbc4hHcPV5J0HaPQc8v-p9RtGwQXkmoQE8wiXNAk8Ynn7E9G_ZCk-kgm9G03QZ8uhbbn8D6olm4p5D4gimrhbYefeEQCcnIhSacE81DxSawPfrQnPdyIIZoVPC1uerrCbwJDl6tCSLe8ULTfjVDTDB1IYlOWsVkaYlmE9cWRVVmJTImrSvzCbwO8DAh1CxbtDicmCBTg2iX2VciL5SWWkxga4SHGWJQZ_5g49m_b7-E24cnxzMzm86PNuFOHiYcxxbHLVhfthfuOdyyP5ZnXfsiwj2BL9eNpEvNR0F2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKixA98CxioUAOVJyijeP4dUCopV2xaolWCFBvZuLY0MumJNsi_hq_jnHiLL3ArQeuiWU5mW9e9vgbQl46JRwDkaW0ppAWjtJUV5lPbU2dBym1dT1l_oksS3V6qhcb5Nd4FyaUVY42sTfUdWPDHvmU5azP43Ix9bEsYnE4e3P-PQ0dpMJJ69hOY4DIsfv5A9O37vX8EGW9l-ezo49v36Wxw0BqmeCrVFQq4x6EynylGXBJba6zrAYHlaYeVV8qbq3nDj8C6ornAJXCoMVZoXTtGc57g2xJDDJQu7YOjsrFh_UOT2DcVIUequ0Zrn6KMeg3ytBjssDlcMUP9u0C_uYUek83u_s__6N75E6Mr5P9QSHukw23fEC236_JabuHRJcXwzEVDouULAmG7gkkfYfQpPHJZ2jP4i5pMo-EGk3b7ZBP17L2R2Rz2SzdY5L4giqrubYefOEAEOPAuEYNwAQQFJ2QvVGe5nwgCjGYYAW5m6tyn5CDIOz1mEDv3T9o2q8mWgtTFwITTauokBYTcMzCeVHJTAKlwjqZT8irABUTjNCqBQvxLgUuNdB5mX3F80JpofmE7I5QMdE6deYPTp78-_ULcgsBZE7m5fFTcjsPrY_72sddsrlqL9wzctNers669nnEfkK-XDeUfgMwCUuH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Analysis+for+a+Class+of+Variational+Integrators&rft.jtitle=Mathematics+%28Basel%29&rft.au=Shen%2C+Yihan&rft.au=Sun%2C+Yajuan&rft.date=2025-08-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=13&rft.issue=15&rft.spage=2326&rft_id=info:doi/10.3390%2Fmath13152326&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math13152326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon