Numerical Analysis for a Class of Variational Integrators

In this paper, we study a geometric framework for second-order differential systems arising in classical and relativistic mechanics. For this class of systems, we derive necessary and sufficient conditions for their Lagrangian description. The main objectives of this work are to construct efficient...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 13; číslo 15; s. 2326
Hlavní autori: Shen, Yihan, Sun, Yajuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2025
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study a geometric framework for second-order differential systems arising in classical and relativistic mechanics. For this class of systems, we derive necessary and sufficient conditions for their Lagrangian description. The main objectives of this work are to construct efficient structure-preserving variational integrators in a variational framework. To achieve this, we develop new variational integrators through Lagrangian splitting and prove their equivalence to composition methods. We display the superiority of the newly derived numerical methods for the Kepler problem and provide rigorous error estimates by analysing the Laplace–Runge–Lenz vector. The framework provides tools applicable to geometric numerical integration of both ordinary and partial differential equations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math13152326