Aviation Fuel Pump Fault Diagnosis Based on Conditional Variational Self-Encoder Adaptive Synthetic Less Data Enhancement
The aircraft fuel pump is a critical component of the aviation fuel supply system, and its fault diagnosis is essential in ensuring flight safety. However, in practical operating conditions, fault samples are scarce and data distributions are highly imbalanced, which severely limits the ability of t...
Saved in:
| Published in: | Mathematics (Basel) Vol. 13; no. 14; p. 2218 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.07.2025
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The aircraft fuel pump is a critical component of the aviation fuel supply system, and its fault diagnosis is essential in ensuring flight safety. However, in practical operating conditions, fault samples are scarce and data distributions are highly imbalanced, which severely limits the ability of traditional models to identify minority-class faults. To address this challenge, this paper proposes a fault diagnosis method for aircraft fuel pumps based on adaptive synthetic data augmentation using a Conditional Variational Autoencoder (CVAE). The CVAE generates semantically consistent and feature-diverse minority-class samples under class-conditional constraints, thereby enhancing the overall representational capacity of the dataset. Simultaneously, the Adaptive Synthetic (ADASYN) approach adaptively augments hard-to-classify samples near decision boundaries, enabling fine-grained control over sample distribution. The integration of these two techniques establishes a “broad coverage + focused refinement” augmentation strategy, effectively mitigating the class imbalance problem. Experimental results demonstrate that the proposed method significantly improves the recognition performance of minority-class faults on real-world aircraft fuel pump fault datasets. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math13142218 |