Linear Precoding for Relay Networks: A Perspective on Finite-Alphabet Inputs

This paper considers the precoder design for dual-hop amplify-and-forward relay networks and formulates the design from the standpoint of finite-alphabet inputs. In particular, the mutual information is employed as the utility function, which, however, results in a nonlinear and nonconcave problem....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 11; no. 3; pp. 1146 - 1157
Main Authors: Weiliang Zeng, Zheng, Y. R., Mingxi Wang, Jianhua Lu
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.03.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers the precoder design for dual-hop amplify-and-forward relay networks and formulates the design from the standpoint of finite-alphabet inputs. In particular, the mutual information is employed as the utility function, which, however, results in a nonlinear and nonconcave problem. This paper exploits the structure of the optimal precoder that maximizes the mutual information and develops a two-step algorithm based on convex optimization and optimization on the Stiefel manifold. By doing so, the proposed algorithm is insensitive to initial point selection and able to achieve a near global optimal precoder solution. Besides, it converges fast and offers high mutual information gain. These advantages are verified by numerical examples, which also show the large performance gain in mutual information also represents the large gain in the coded bit-error rate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2012.012412.110747