A Novel Genetic Algorithm for Constrained Multimodal Multi-Objective Optimization Problems
This paper proposes a multitasking-based genetic algorithm (MTGA-CMMO) to solve constrained multimodal multi-objective optimization problems (CMMOPs). In MTGA-CMMO, the main task is assisted by two auxiliary tasks to obtain all the feasible Pareto solution sets. The constraint boundaries of auxiliar...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 13; číslo 11; s. 1851 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2025
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a multitasking-based genetic algorithm (MTGA-CMMO) to solve constrained multimodal multi-objective optimization problems (CMMOPs). In MTGA-CMMO, the main task is assisted by two auxiliary tasks to obtain all the feasible Pareto solution sets. The constraint boundaries of auxiliary task 1 are dynamically adjusted, facilitating the main task’s population in crossing infeasible regions early in the evolution and providing more evolutionary direction later in the evolution. Auxiliary task 2 can contribute to the exploitation ability of the main task. Meanwhile, a probability-based leader mating selection mechanism is devised to improve the global search capability of MTGA-CMMO. Additionally, three environmental selection strategies are designed to correspond to the different tasks in MTGA-CMMO. Extensive experimental verification demonstrates that MTGA-CMMO outperforms other comparative algorithms across multiple test instances and one practical application problem. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math13111851 |