Solid‐state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide

ABSTRACT A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science Vol. 134; no. 20; pp. np - n/a
Main Authors: Yang, Qian, Yu, Haitao, Song, Lixian, Lei, Yajie, Zhang, Fengshun, Lu, Ai, Liu, Tao, Luo, Shikai
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 20.05.2017
Subjects:
ISSN:0021-8995, 1097-4628
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10−5 cm2/s to 7.83 × 10−5 cm2/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 μm and cell density exceeding 108 cells/cm3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44807.
AbstractList A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10-5 cm2/s to 7.83 × 10-5 cm2/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 µm and cell density exceeding 108 cells/cm3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44807.
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO sub(2) as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO sub(2) in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 10 super(-5) cm super(2)/s to 7.83 10 super(-5) cm super(2)/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 mu m and cell density exceeding 10 super(8) cells/cm super(3) are achieved. J. Appl. Polym. Sci. 2017, 134, 44807.
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO 2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO 2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10 −5 cm 2 /s to 7.83 × 10 −5 cm 2 /s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 μm and cell density exceeding 10 8 cells/cm 3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44807.
ABSTRACT A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10−5 cm2/s to 7.83 × 10−5 cm2/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 μm and cell density exceeding 108 cells/cm3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44807.
Author Song, Lixian
Lu, Ai
Zhang, Fengshun
Yang, Qian
Lei, Yajie
Luo, Shikai
Liu, Tao
Yu, Haitao
Author_xml – sequence: 1
  givenname: Qian
  surname: Yang
  fullname: Yang, Qian
  organization: Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering
– sequence: 2
  givenname: Haitao
  surname: Yu
  fullname: Yu, Haitao
  organization: Material Science and Engineering College, Southwest University of Science and Technology
– sequence: 3
  givenname: Lixian
  surname: Song
  fullname: Song, Lixian
  organization: Material Science and Engineering College, Southwest University of Science and Technology
– sequence: 4
  givenname: Yajie
  surname: Lei
  fullname: Lei, Yajie
  organization: Institute of Chemical Materials, China Academy of Engineering Physics
– sequence: 5
  givenname: Fengshun
  surname: Zhang
  fullname: Zhang, Fengshun
  organization: Institute of Chemical Materials, China Academy of Engineering Physics
– sequence: 6
  givenname: Ai
  surname: Lu
  fullname: Lu, Ai
  organization: Institute of Chemical Materials, China Academy of Engineering Physics
– sequence: 7
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  email: liutao_caep@163.com
  organization: Institute of Chemical Materials, China Academy of Engineering Physics
– sequence: 8
  givenname: Shikai
  surname: Luo
  fullname: Luo, Shikai
  email: luosk_caep@163.com
  organization: Institute of Chemical Materials, China Academy of Engineering Physics
BookMark eNp9kLlOxDAQhi0EEstR8AaWaKAIeELio0SIS0ICiaONvD5YIycOdsICFY_AM_IkGJYKCaop5vt_zXxraLkLnUFoC8geEFLuy77fqypO2BKaABGsqGjJl9Ek76DgQtSraC2lB0IAakInyF4H7_TH23sa5GBw61QMyng_ehnxzN3P8GDa3kQ5jNHgp9Er2blXo_HO2c3dLk7OO5UvwHGcTk3ENsgWz90ww0rGaeiwduHZabOBVqz0yWz-zHV0e3J8c3RWXFyenh8dXhTqgNas0BbslDNFOGWWUVMRq3hZ1UpIJSxUIIjWzAhGha6hYrWVAKAVI4JQruFgHe0sevsYHkeThqZ16esf2ZkwpgY4r4CUnNOMbv9CH8IYu3xdpqjgJWWcZ2p3QWUvKUVjmz66VsaXBkjzZbzJxptv45nd_8Uql6260A1ROv9fYu68efm7ujm8ulokPgFfI5Uy
CODEN JAPNAB
CitedBy_id crossref_primary_10_1016_j_matchemphys_2021_125182
crossref_primary_10_1038_s41428_020_00439_x
crossref_primary_10_3390_polym13193384
crossref_primary_10_1002_app_53053
crossref_primary_10_1002_app_56087
crossref_primary_10_1002_pen_24857
crossref_primary_10_1016_j_supflu_2024_106449
crossref_primary_10_3390_polym13101565
crossref_primary_10_1002_app_55444
crossref_primary_10_1007_s10118_018_2125_8
crossref_primary_10_1016_j_reactfunctpolym_2019_03_004
crossref_primary_10_1002_fam_3154
crossref_primary_10_1088_1361_6463_acdc36
crossref_primary_10_3390_ma16051934
crossref_primary_10_1016_j_supflu_2024_106212
crossref_primary_10_1007_s42464_023_00224_4
crossref_primary_10_1002_mame_202100310
crossref_primary_10_1002_app_50531
crossref_primary_10_1002_pat_5796
crossref_primary_10_1016_j_colsurfa_2020_125310
crossref_primary_10_1016_j_supflu_2025_106614
crossref_primary_10_1038_s41428_019_0175_6
crossref_primary_10_1016_j_supflu_2020_104913
crossref_primary_10_1080_15583724_2021_1897996
Cites_doi 10.1002/app.20619
10.1016/S0142-9418(01)00035-6
10.1016/j.matlet.2012.03.093
10.1002/jbm.820140108
10.1016/j.matlet.2014.01.125
10.1016/j.supflu.2006.04.013
10.1016/j.supflu.2011.11.024
10.1016/j.polymer.2013.09.050
10.1021/ie302281c
10.1021/am303289m
10.1016/j.polymer.2014.09.061
10.1016/0142-9612(94)90215-1
10.1177/026248930302200303
10.1002/pen.23894
10.1021/ma971811z
10.1177/073168449301200308
10.1002/app.31480
10.1007/s11814-013-0188-3
10.1016/j.polymer.2005.06.054
10.1021/ie504345y
10.1016/j.compscitech.2005.06.016
10.1016/j.supflu.2014.01.013
10.1016/j.eurpolymj.2006.07.022
10.1016/j.polymer.2012.05.033
10.1016/j.polymer.2009.09.020
10.1016/j.matdes.2009.12.041
10.1039/b801895b
10.1002/app.21469
10.1021/ie403580x
10.1016/j.polymertesting.2014.05.008
10.1039/b805943h
10.1021/ie5023145
10.1002/app.32852
10.1021/ma070767c
10.1002/jbm.a.31823
10.1016/j.matlet.2012.12.024
10.1295/polymj.22.77
10.1002/app.30341
10.1002/pen.10538
10.5254/1.3538299
10.1016/j.polymer.2015.06.031
10.1016/j.carbon.2014.01.031
10.1016/j.eurpolymj.2008.06.033
10.1016/j.polymer.2004.08.061
10.1002/app.31640
10.1016/j.polymer.2011.04.049
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.44807
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 4315365461
10_1002_app_44807
APP44807
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11302197; 51173174
– fundername: Science and Technology Foundation of Institute of Chemical Materials
  funderid: KJCX‐201402
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
O8X
7SR
8FD
JG9
ID FETCH-LOGICAL-c3657-df1fb87c0867f76e40fc8245c9ac9f14190dd7e9769d51475fa111dc709068d13
IEDL.DBID DRFUL
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395129600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-8995
IngestDate Sun Nov 23 09:48:06 EST 2025
Fri Jul 25 12:13:51 EDT 2025
Sat Nov 29 01:45:20 EST 2025
Tue Nov 18 22:11:32 EST 2025
Wed Aug 20 07:26:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3657-df1fb87c0867f76e40fc8245c9ac9f14190dd7e9769d51475fa111dc709068d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/app.44807
PQID 1869826788
PQPubID 1006379
PageCount 9
ParticipantIDs proquest_miscellaneous_1884102886
proquest_journals_1869826788
crossref_primary_10_1002_app_44807
crossref_citationtrail_10_1002_app_44807
wiley_primary_10_1002_app_44807_APP44807
PublicationCentury 2000
PublicationDate 20 May 2017
PublicationDateYYYYMMDD 2017-05-20
PublicationDate_xml – month: 05
  year: 2017
  text: 20 May 2017
  day: 20
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 56
2010; 31
2011; 119
2015; 70
1993; 66
2008; 18
2006; 17
2015; 55
2004; 45
2015; 54
2011; 52
1992; 18
2009; 113
2005; 65
2008; 10
1996; 36
2012; 79
2013; 5
2012; 53
2014; 88
2005; 46
2001; 20
1980; 14
1993; 12
1990; 22
1982; 28
2006; 42
2004; 93
2013; 54
2010; 116
2009; 50
2013; 94
2013; 52
2005; 96
2014; 37
2008; 87
1994; 15
2008; 44
2007; 40
2014; 121
1998; 31
2014; 71
2003; 22
2014; 31
2014; 53
2012; 62
e_1_2_6_32_1
Abbasi F. (e_1_2_6_4_1) 2006; 17
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
Pillai V. (e_1_2_6_46_1) 1992; 18
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
References_xml – volume: 65
  start-page: 2344
  year: 2005
  publication-title: Compos. Sci. Technol.
– volume: 28
  start-page: 674
  year: 1982
– volume: 66
  start-page: 48
  year: 1993
  publication-title: Rubber Chem. Technol.
– volume: 53
  start-page: 19934
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 96
  start-page: 494
  year: 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 5
  start-page: 2677
  year: 2013
  publication-title: ACS Appl. Mater. Interface
– volume: 94
  start-page: 76
  year: 2013
  publication-title: Mater. Lett.
– volume: 88
  start-page: 66
  year: 2014
  publication-title: J. Supercrit. Fluids
– volume: 40
  start-page: 5441
  year: 2007
  publication-title: Macromolecules
– volume: 121
  start-page: 126
  year: 2014
  publication-title: Mater. Lett.
– volume: 52
  start-page: 6390
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 45
  start-page: 7539
  year: 2004
  publication-title: Polymer
– volume: 12
  start-page: 359
  year: 1993
  publication-title: Reinforced Plast. Compos.
– volume: 40
  start-page: 144
  year: 2007
  publication-title: J. Supercrit. Fluids
– volume: 37
  start-page: 148
  year: 2014
  publication-title: Polym. Test.
– volume: 17
  start-page: 341
  year: 2006
  publication-title: J. Biomed. Sci.
– volume: 62
  start-page: 197
  year: 2012
  publication-title: J. Supercrit. Fluids
– volume: 79
  start-page: 159
  year: 2012
  publication-title: Mater. Lett.
– volume: 50
  start-page: 5576
  year: 2009
  publication-title: Polymer
– volume: 14
  start-page: 65
  year: 1980
  publication-title: J. Biomed. Mater. Res.
– volume: 31
  start-page: 4614
  year: 1998
  publication-title: J. Macromolecules
– volume: 54
  start-page: 6389
  year: 2013
  publication-title: Polymer
– volume: 54
  start-page: 2476
  year: 2015
  publication-title: Ind. Eng. Chem. Res.
– volume: 113
  start-page: 3590
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– volume: 44
  start-page: 2790
  year: 2008
  publication-title: Eur. Polym. J.
– volume: 18
  start-page: 3933
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 731
  year: 2008
  publication-title: Green Chem.
– volume: 70
  start-page: 231
  year: 2015
  publication-title: Polymer
– volume: 31
  start-page: 3106
  year: 2010
  publication-title: Mater. Des.
– volume: 46
  start-page: 7273
  year: 2005
  publication-title: Polymer
– volume: 87
  start-page: 546
  year: 2008
  publication-title: J. Biomed. Mater. Res. A
– volume: 116
  start-page: 449
  year: 2010
  publication-title: J. Appl. Polym. Sci.
– volume: 22
  start-page: 175
  year: 2003
  publication-title: Cell Polym.
– volume: 119
  start-page: 1696
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– volume: 53
  start-page: 3135
  year: 2012
  publication-title: Polymer
– volume: 116
  start-page: 1994
  year: 2010
  publication-title: J. Appl. Polym. Sci.
– volume: 52
  start-page: 2910
  year: 2011
  publication-title: Polymer
– volume: 56
  start-page: 46
  year: 2015
  publication-title: Polymer
– volume: 55
  start-page: 375
  year: 2015
  publication-title: Polym. Eng. Sci.
– volume: 18
  start-page: 155
  year: 1992
  publication-title: Plast. Rubber Compos. Process Appl.
– volume: 71
  start-page: 206
  year: 2014
  publication-title: Carbon
– volume: 22
  start-page: 77
  year: 1990
  publication-title: Polym. J.
– volume: 31
  start-page: 166
  year: 2014
  publication-title: Korean J. Chem. Eng.
– volume: 42
  start-page: 3145
  year: 2006
  publication-title: Eur. Polym. J.
– volume: 93
  start-page: 1501
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 20
  start-page: 925
  year: 2001
  publication-title: Polym. Test.
– volume: 53
  start-page: 2673
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 15
  start-page: 635
  year: 1994
  publication-title: Biomaterials
– volume: 36
  start-page: 1437
  year: 1996
  publication-title: Polym. Eng. Sci.
– ident: e_1_2_6_23_1
– ident: e_1_2_6_48_1
  doi: 10.1002/app.20619
– ident: e_1_2_6_40_1
  doi: 10.1016/S0142-9418(01)00035-6
– ident: e_1_2_6_19_1
  doi: 10.1016/j.matlet.2012.03.093
– ident: e_1_2_6_3_1
  doi: 10.1002/jbm.820140108
– ident: e_1_2_6_37_1
  doi: 10.1016/j.matlet.2014.01.125
– ident: e_1_2_6_14_1
  doi: 10.1016/j.supflu.2006.04.013
– ident: e_1_2_6_45_1
  doi: 10.1016/j.supflu.2011.11.024
– ident: e_1_2_6_49_1
  doi: 10.1016/j.polymer.2013.09.050
– ident: e_1_2_6_28_1
  doi: 10.1021/ie302281c
– ident: e_1_2_6_13_1
  doi: 10.1021/am303289m
– ident: e_1_2_6_42_1
  doi: 10.1016/j.polymer.2014.09.061
– ident: e_1_2_6_6_1
  doi: 10.1016/0142-9612(94)90215-1
– ident: e_1_2_6_38_1
  doi: 10.1177/026248930302200303
– ident: e_1_2_6_32_1
  doi: 10.1002/pen.23894
– ident: e_1_2_6_15_1
  doi: 10.1021/ma971811z
– ident: e_1_2_6_25_1
  doi: 10.1177/073168449301200308
– ident: e_1_2_6_7_1
  doi: 10.1002/app.31480
– ident: e_1_2_6_36_1
  doi: 10.1007/s11814-013-0188-3
– ident: e_1_2_6_26_1
  doi: 10.1016/j.polymer.2005.06.054
– ident: e_1_2_6_33_1
  doi: 10.1021/ie504345y
– ident: e_1_2_6_10_1
  doi: 10.1016/j.compscitech.2005.06.016
– ident: e_1_2_6_50_1
  doi: 10.1016/j.supflu.2014.01.013
– ident: e_1_2_6_27_1
  doi: 10.1016/j.eurpolymj.2006.07.022
– ident: e_1_2_6_12_1
  doi: 10.1016/j.polymer.2012.05.033
– ident: e_1_2_6_43_1
  doi: 10.1016/j.polymer.2009.09.020
– ident: e_1_2_6_44_1
  doi: 10.1016/j.matdes.2009.12.041
– volume: 18
  start-page: 155
  year: 1992
  ident: e_1_2_6_46_1
  publication-title: Plast. Rubber Compos. Process Appl.
– ident: e_1_2_6_17_1
  doi: 10.1039/b801895b
– ident: e_1_2_6_5_1
  doi: 10.1002/app.21469
– ident: e_1_2_6_41_1
  doi: 10.1021/ie403580x
– ident: e_1_2_6_30_1
  doi: 10.1016/j.polymertesting.2014.05.008
– ident: e_1_2_6_22_1
  doi: 10.1039/b805943h
– ident: e_1_2_6_39_1
  doi: 10.1021/ie5023145
– ident: e_1_2_6_16_1
  doi: 10.1002/app.32852
– ident: e_1_2_6_2_1
  doi: 10.1021/ma070767c
– ident: e_1_2_6_8_1
  doi: 10.1002/jbm.a.31823
– volume: 17
  start-page: 341
  year: 2006
  ident: e_1_2_6_4_1
  publication-title: J. Biomed. Sci.
– ident: e_1_2_6_18_1
  doi: 10.1016/j.matlet.2012.12.024
– ident: e_1_2_6_47_1
  doi: 10.1295/polymj.22.77
– ident: e_1_2_6_9_1
  doi: 10.1002/app.30341
– ident: e_1_2_6_24_1
  doi: 10.1002/pen.10538
– ident: e_1_2_6_20_1
  doi: 10.5254/1.3538299
– ident: e_1_2_6_31_1
  doi: 10.1016/j.polymer.2015.06.031
– ident: e_1_2_6_29_1
  doi: 10.1016/j.carbon.2014.01.031
– ident: e_1_2_6_21_1
  doi: 10.1016/j.eurpolymj.2008.06.033
– ident: e_1_2_6_34_1
  doi: 10.1016/j.polymer.2004.08.061
– ident: e_1_2_6_35_1
  doi: 10.1002/app.31640
– ident: e_1_2_6_11_1
  doi: 10.1016/j.polymer.2011.04.049
SSID ssj0011506
Score 2.3578296
SecondaryResourceType review_article
Snippet ABSTRACT A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological...
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO 2 as a physical blowing agent. Rheological properties,...
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties,...
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO sub(2) as a physical blowing agent. Rheological...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Blowing agents
Carbon dioxide
Diffusivity
Foaming
Foams
high temperature vulcanized silicone rubber
Materials science
microcellular foam
Polyetherimides
Polymers
Saturation
Silicone rubber
Title Solid‐state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.44807
https://www.proquest.com/docview/1869826788
https://www.proquest.com/docview/1884102886
Volume 134
WOSCitedRecordID wos000395129600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-4628
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011506
  issn: 0021-8995
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RhUN7gLaAupRWBvVADxFJ1l7b4oSAFQeEVuUhblHihxRpSVCWRRz5CfxGfklnkmwAiUqVuEXKRLbmYX_jeL4B-GW012GqTEA9BAKOGDnATXAQaKFU5DLiUOd1swl5eqqurvR4AfbmtTANP0R34EaRUa_XFOBpNt19Jg2lNlicCqI_wGKMfst7sHj4Z3Rx0v1EIPK85oZHFGBaIebEQmG82338ejt6xpgvkWq91YxW3jXJz7DcIky237jEF1hwxVf49IJ3cBX8WTnJ7dPDY11OxK7pUh6d4NOVVEYExowYq1q6ZXY3mxiq13SW7RyfX_5m03yC_lM4Vs2yzFXMl-k1owNdZtIqKwtm8_I-t24NLkZH5wfHQdtwITCDoZCB9ZHPlDSY5kgvh46H3qiYC6NTtGnEETxYKx0iGG0RaEnhU1wqrZGhDofKRoN16BU4_DdgzkVGSW28IQbCWCg5MDbjIkuNF17rPuzM9Z6Ylo2cmmJMkoZHOU5QdUmtuj5sd6I3DQXHW0Kbc-MlbRROE2q3hekTZvl92OpeY_yQStPClTOSUZxAlhrilGpT_nuQZH88rh82_l_0O3yMCQmEAhekTejdVjP3A5bM3W0-rX62LvsXt1rwBw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_aq1D7YP1Lr7a6ig_1IVyS273dBV-Kepx4HodepW8h2T8QuCaS6xUf_Qj9jH4SZ5JcWkFB8C2QCbvMzuz-ZrLzG4BXRnsdpsoE1EMg4IiRAzwEh4EWSkUuIw51XjebkLOZOj_X8y14s6mFafghuoQbeUa9X5ODU0J6cMMaSn2wOFVEb8MORzMSPdh593l8Nu3-IhB7XnPFIwowrhAbZqEwHnQf_34e3YDM21C1PmvG-_83y_twr8WY7LQxigew5YqHsHeLefAR-C_lMrc_f1zXBUXsgq7lUQ6fLqUyojBmxFnVEi6zq_XSUMWms-xksvj6mq3yJVpQ4Vi1zjJXMV-mF4xSusykVVYWzObl99y6x3A2fr94OwnalguBGY6EDKyPfKakwUBHejlyPPRGxVwYneKqRhzhg7XSIYbRFqGWFD7FzdIaGepwpGw0fAK9Aoc_AOZcZJTUxhviIIyFkkNjMy6y1Hjhte7DyUbxiWn5yKktxjJpmJTjBFWX1Krrw8tO9FtDwvEnoaPN6iWtH64SariFARTG-X140b1GDyKVpoUr1ySjOMEsNcIp1Wv590GS0_m8fjj8d9HnsDtZfJom0w-zj0_hbky4IBS4PR1B77Jau2O4Y64u81X1rLXfXxLh8_c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB-sltI-2FYtvWrttvRBH4JJbje7C76I9lAqx9Gq-BaS_QOBM5GcJ33sR-hn7CfpTJKLFioIfQtkwi4zO7u_mez8BuCz0V6HmTIB9RAIOGLkAA_BYaCFUpHLiUOdN80m5HisLi_1ZAn2F7UwLT9En3Ajz2j2a3Jwd2393h1rKPXB4lQR_QRWuNAJuuXK0bfR-Wn_F4HY89orHlGAcYVYMAuF8V7_8d_n0R3IvA9Vm7Nm9PL_ZvkKVjuMyQ7aRfEally5Bi_uMQ-ug_9eTQv7--evpqCIXdG1PMrh06VURhTGjDirOsJldjufGqrYdJbtHJ9d7LJZMcUVVDpWz_Pc1cxX2RWjlC4zWZ1XJbNF9aOwbgPOR1_ODo-DruVCYIaJkIH1kc-VNBjoSC8Tx0NvVMyF0RlaNeIIH6yVDjGMtgi1pPAZbpbWyFCHibLR8A0slzj8W2DORUZJbbwhDsJYKDk0Nuciz4wXXusB7CwUn5qOj5zaYkzTlkk5TlF1aaO6AXzqRa9bEo5_CW0trJd2fjhLqeEWBlAY5w_gY_8aPYhUmpWumpOM4gSzVIJTamz58CDpwWTSPLx7vOgHeDY5GqWnJ-Ovm_A8JlgQCtydtmD5pp679_DU3N4Us3q7W75_AK_p83I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid%E2%80%90state+microcellular+high+temperature+vulcanized+%28HTV%29+silicone+rubber+foam+with+carbon+dioxide&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Yang%2C+Qian&rft.au=Yu%2C+Haitao&rft.au=Song%2C+Lixian&rft.au=Lei%2C+Yajie&rft.date=2017-05-20&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=134&rft.issue=20&rft_id=info:doi/10.1002%2Fapp.44807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_44807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon