New algorithms for approximating oscillatory Bessel integrals with Cauchy-type singularities

In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in applied mathematics Jg. 21; S. 100422
Hauptverfasser: Wu, Qinghua, Sun, Mengjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2024
Elsevier
Schlagworte:
ISSN:2590-0374, 2590-0374
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integrals with a Fourier kernel. When the integration interval does not contain zeros, we use Cauchy’s theorem to transform the integration path to the complex plane and then use the Gaussian–Laguerre formula to compute the integral. For cases in which the integration interval contains zeros, we decompose the integral into two parts: the ordinary and the singular integral. We give a stable recursive formula based on Chebyshev polynomials and Bessel functions for ordinary integrals. For singular integrals, we utilize the MeijerG function for efficient computation. Numerical examples verify the effectiveness of the new algorithm and the fast convergence.
AbstractList In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integrals with a Fourier kernel. When the integration interval does not contain zeros, we use Cauchy’s theorem to transform the integration path to the complex plane and then use the Gaussian–Laguerre formula to compute the integral. For cases in which the integration interval contains zeros, we decompose the integral into two parts: the ordinary and the singular integral. We give a stable recursive formula based on Chebyshev polynomials and Bessel functions for ordinary integrals. For singular integrals, we utilize the MeijerG function for efficient computation. Numerical examples verify the effectiveness of the new algorithm and the fast convergence.
ArticleNumber 100422
Author Wu, Qinghua
Sun, Mengjun
Author_xml – sequence: 1
  givenname: Qinghua
  surname: Wu
  fullname: Wu, Qinghua
  email: jackwqh@sina.com
– sequence: 2
  givenname: Mengjun
  surname: Sun
  fullname: Sun, Mengjun
  email: 459257638@qq.com
BookMark eNp9kMtKAzEUhoMoeOsTuMkLTD2TpDOThQst3kB0ozshnElPasp0UpLx0rc3bUVcuQgJh3wf__mP2X4femLsrIRxCWV1vhhH3-NyLEDIPAElxB47EhMNBcha7f95H7JRSgsAEE1GFRyx10f65NjNQ_TD2zJxFyLH1SqGL7_EwfdzHpL1XYdDiGt-RSlRx30_0Dxil_hnpvgU3-3buhjWK-IpI-8dZpundMoOXP5Fo5_7hL3cXD9P74qHp9v76eVDYWWlhsI51VorXI1SllZr0qK1Oa1CFHVVtXVV1lQB6glA49qJ1rbUUEkBFbUzJ-UJu995ZwEXZhVz9Lg2Ab3ZDkKcG4yDtx0ZJIsTpVpFEvJptHa2butGSCuFnjXZJXcuG0NKkdyvrwSz6dsszLZvs-nb7PrO1MWOorzmh6docmvUW5r5SHbIOfy__DcocY0F
Cites_doi 10.1137/S0036142903431936
10.1016/j.cam.2021.113705
10.1007/BF01934465
10.1016/j.jmaa.2015.11.002
10.1093/imanum/drq035
10.1016/j.cam.2023.115220
10.1016/j.camwa.2016.05.016
10.1016/j.apnum.2012.01.009
10.1090/S0025-5718-1991-1068816-1
10.1016/j.jcp.2010.03.034
10.1016/j.apnum.2019.06.007
10.1155/2021/8021050
10.1007/s11075-015-0033-3
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinam.2023.100422
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2590-0374
ExternalDocumentID oai_doaj_org_article_aeca544b4e304e3899fc7b7823c329d8
10_1016_j_rinam_2023_100422
S2590037423000687
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
ID FETCH-LOGICAL-c364t-ff4bcc2f7a331c99e92bc3744aa2766b7617e60a95008fb599c19063206ebdf33
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166068000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-0374
IngestDate Fri Oct 03 12:43:49 EDT 2025
Thu Nov 20 00:29:08 EST 2025
Sat Mar 30 16:21:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 65D30
Bessel integral
Complex integration method
Gauss–Laguerre
Cauchy-type singularities
65D32
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ff4bcc2f7a331c99e92bc3744aa2766b7617e60a95008fb599c19063206ebdf33
OpenAccessLink https://doaj.org/article/aeca544b4e304e3899fc7b7823c329d8
ParticipantIDs doaj_primary_oai_doaj_org_article_aeca544b4e304e3899fc7b7823c329d8
crossref_primary_10_1016_j_rinam_2023_100422
elsevier_sciencedirect_doi_10_1016_j_rinam_2023_100422
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Results in applied mathematics
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ablowitz, Fokas (b20) 1969
Langdon, Chandler-Wilde (b3) 2006; 43
Lin, Chen, Liu (b5) 2016; 72
Xiang, Cho, Wang, H. (b18) 2011; 31
Abramowitz, Stegun (b6) 1964
Bateman, A. (b21) 1981
Xiang, Fang, Xu (b7) 2016; 435
Liu, Xiang (b8) 2019; 340
Piessens, Branders (b19) 1983; 23
Xu, Xiang (b11) 2016; 72
Kang, Wang, Zhang, Xiang (b14) 2023
Chen (b9) 2012; 62
Nédélec (b4) 2001
I.S., Ryzhik (b15) 2007
Torii (b17) 1991; 56
Wu, Sun (b12) 2021; 2021
Zaman (b13) 2022; 399
Colton, Kress (b2) 1983
J. Ablowitz (b16) 1997
Xu, Fang, Geng (b10) 2019; 145
Asheim, Huybrechs (b1) 2009; 229
Xu (10.1016/j.rinam.2023.100422_b10) 2019; 145
Ablowitz (10.1016/j.rinam.2023.100422_b20) 1969
Torii (10.1016/j.rinam.2023.100422_b17) 1991; 56
Asheim (10.1016/j.rinam.2023.100422_b1) 2009; 229
Xiang (10.1016/j.rinam.2023.100422_b18) 2011; 31
Zaman (10.1016/j.rinam.2023.100422_b13) 2022; 399
Colton (10.1016/j.rinam.2023.100422_b2) 1983
I.S. (10.1016/j.rinam.2023.100422_b15) 2007
J. Ablowitz (10.1016/j.rinam.2023.100422_b16) 1997
Liu (10.1016/j.rinam.2023.100422_b8) 2019; 340
Xu (10.1016/j.rinam.2023.100422_b11) 2016; 72
Xiang (10.1016/j.rinam.2023.100422_b7) 2016; 435
Kang (10.1016/j.rinam.2023.100422_b14) 2023
Langdon (10.1016/j.rinam.2023.100422_b3) 2006; 43
Chen (10.1016/j.rinam.2023.100422_b9) 2012; 62
Bateman (10.1016/j.rinam.2023.100422_b21) 1981
Abramowitz (10.1016/j.rinam.2023.100422_b6) 1964
Wu (10.1016/j.rinam.2023.100422_b12) 2021; 2021
Piessens (10.1016/j.rinam.2023.100422_b19) 1983; 23
Nédélec (10.1016/j.rinam.2023.100422_b4) 2001
Lin (10.1016/j.rinam.2023.100422_b5) 2016; 72
References_xml – volume: 340
  start-page: 251
  year: 2019
  end-page: 267
  ident: b8
  article-title: Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels
  publication-title: Appl Math Comput
– year: 1983
  ident: b2
  article-title: Integral equation methods in scattering theory
– volume: 72
  start-page: 37
  year: 2016
  end-page: 56
  ident: b11
  article-title: On the evaluation of highly oscillatory finite Hankel transform using special functions
  publication-title: Numer Algorithms
– volume: 145
  start-page: 121
  year: 2019
  end-page: 132
  ident: b10
  article-title: Fast computation of Bessel transform with highly oscillatory integrands
  publication-title: Appl Numer Math
– volume: 435
  start-page: 1210
  year: 2016
  end-page: 1228
  ident: b7
  article-title: On uniform approximations to hypersingular finite-part integrals
  publication-title: J Math Anal Appl
– year: 1969
  ident: b20
  article-title: The special functions and their approximations, vol. 2
– year: 1997
  ident: b16
  article-title: Complex variables: Introduction and applications
– volume: 31
  start-page: 1281
  year: 2011
  end-page: 1314
  ident: b18
  article-title: Clenshaw-Curtis-Filon-type methods for highly oscillatory bessel transforms and applications
  publication-title: IMA J Numer Anal
– year: 1964
  ident: b6
  article-title: Handbook of mathematical functions
– volume: 2021
  year: 2021
  ident: b12
  article-title: Numerical steepest descent method for Hankel type of hypersingular oscillatory integrals in electromagnetic scattering problems
  publication-title: Adv Math Phys
– volume: 399
  year: 2022
  ident: b13
  article-title: New algorithms for approximation of Bessel transforms with high frequency parameter
  publication-title: J Comput Appl Math
– year: 2001
  ident: b4
  article-title: Acoustic and electromagnetic equations
– year: 2023
  ident: b14
  article-title: Efficient computation of oscillatory Bessel transforms with a singularity of Cauchy type
  publication-title: J Comput Appl Math
– volume: 229
  start-page: 5357
  year: 2009
  end-page: 5372
  ident: b1
  article-title: Local solutions to high frequency 2D scattering problems
  publication-title: J Comput Phys
– volume: 43
  start-page: 2450
  year: 2006
  end-page: 2477
  ident: b3
  article-title: A wavenumber independent boundary element method for an acoustic scattering problem
  publication-title: SIAM J Numer Anal
– volume: 62
  start-page: 636
  year: 2012
  end-page: 648
  ident: b9
  article-title: Numerical approximations to integrals with a highly oscillatory Bessel kernel
  publication-title: Appl Numer Math
– volume: 56
  start-page: 741
  year: 1991
  end-page: 754
  ident: b17
  article-title: An automatic quadrature for Cauchy principal value integrals
  publication-title: Math Comp
– year: 1981
  ident: b21
  article-title: Higher transcendental functions, vol. I
– volume: 72
  start-page: 555
  year: 2016
  end-page: 567
  ident: b5
  article-title: Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions
  publication-title: Comput Math Appl
– year: 2007
  ident: b15
  article-title: Table of integrals, series, and products
– volume: 23
  start-page: 370
  year: 1983
  end-page: 381
  ident: b19
  article-title: Modified Clenshaw–Curtis method for the computation of Bessel function integrals
  publication-title: BIT Numer Math
– volume: 43
  start-page: 2450
  year: 2006
  ident: 10.1016/j.rinam.2023.100422_b3
  article-title: A wavenumber independent boundary element method for an acoustic scattering problem
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S0036142903431936
– volume: 399
  issn: 0377-0427
  year: 2022
  ident: 10.1016/j.rinam.2023.100422_b13
  article-title: New algorithms for approximation of Bessel transforms with high frequency parameter
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2021.113705
– volume: 23
  start-page: 370
  year: 1983
  ident: 10.1016/j.rinam.2023.100422_b19
  article-title: Modified Clenshaw–Curtis method for the computation of Bessel function integrals
  publication-title: BIT Numer Math
  doi: 10.1007/BF01934465
– volume: 435
  start-page: 1210
  issue: 2
  year: 2016
  ident: 10.1016/j.rinam.2023.100422_b7
  article-title: On uniform approximations to hypersingular finite-part integrals
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2015.11.002
– volume: 31
  start-page: 1281
  issue: 4
  year: 2011
  ident: 10.1016/j.rinam.2023.100422_b18
  article-title: Clenshaw-Curtis-Filon-type methods for highly oscillatory bessel transforms and applications
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/drq035
– year: 2023
  ident: 10.1016/j.rinam.2023.100422_b14
  article-title: Efficient computation of oscillatory Bessel transforms with a singularity of Cauchy type
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2023.115220
– year: 1981
  ident: 10.1016/j.rinam.2023.100422_b21
– volume: 72
  start-page: 555
  year: 2016
  ident: 10.1016/j.rinam.2023.100422_b5
  article-title: Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2016.05.016
– volume: 62
  start-page: 636
  issue: 5
  year: 2012
  ident: 10.1016/j.rinam.2023.100422_b9
  article-title: Numerical approximations to integrals with a highly oscillatory Bessel kernel
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2012.01.009
– year: 2007
  ident: 10.1016/j.rinam.2023.100422_b15
– volume: 56
  start-page: 741
  issue: 194
  year: 1991
  ident: 10.1016/j.rinam.2023.100422_b17
  article-title: An automatic quadrature for Cauchy principal value integrals
  publication-title: Math Comp
  doi: 10.1090/S0025-5718-1991-1068816-1
– year: 1983
  ident: 10.1016/j.rinam.2023.100422_b2
– volume: 229
  start-page: 5357
  year: 2009
  ident: 10.1016/j.rinam.2023.100422_b1
  article-title: Local solutions to high frequency 2D scattering problems
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.03.034
– volume: 145
  start-page: 121
  issue: 11
  year: 2019
  ident: 10.1016/j.rinam.2023.100422_b10
  article-title: Fast computation of Bessel transform with highly oscillatory integrands
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2019.06.007
– year: 2001
  ident: 10.1016/j.rinam.2023.100422_b4
– volume: 2021
  issn: 1687-9120
  year: 2021
  ident: 10.1016/j.rinam.2023.100422_b12
  article-title: Numerical steepest descent method for Hankel type of hypersingular oscillatory integrals in electromagnetic scattering problems
  publication-title: Adv Math Phys
  doi: 10.1155/2021/8021050
– volume: 340
  start-page: 251
  year: 2019
  ident: 10.1016/j.rinam.2023.100422_b8
  article-title: Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels
  publication-title: Appl Math Comput
– volume: 72
  start-page: 37
  issue: 1
  year: 2016
  ident: 10.1016/j.rinam.2023.100422_b11
  article-title: On the evaluation of highly oscillatory finite Hankel transform using special functions
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-015-0033-3
– year: 1997
  ident: 10.1016/j.rinam.2023.100422_b16
– year: 1964
  ident: 10.1016/j.rinam.2023.100422_b6
– year: 1969
  ident: 10.1016/j.rinam.2023.100422_b20
SSID ssj0002810140
Score 2.2527776
Snippet In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100422
SubjectTerms Bessel integral
Cauchy-type singularities
Complex integration method
Gauss–Laguerre
Title New algorithms for approximating oscillatory Bessel integrals with Cauchy-type singularities
URI https://dx.doi.org/10.1016/j.rinam.2023.100422
https://doaj.org/article/aeca544b4e304e3899fc7b7823c329d8
Volume 21
WOSCitedRecordID wos001166068000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-0374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810140
  issn: 2590-0374
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MRAT7bMcjrahYqBhA6oAU2Y7Th0qKmhbBv8d2kiossDBkiZxz9F2U-3w-f4fQFXAKwsYyMoLlESTAImmIjrRIpHX0HyzNQrMJMRgkw6F8arX68jVhlTxwBdyNskYxAO0eit3llge5Ec4SoYYSmYVjvrGQrcXUNKSMfA_auJEZCgVdi0mh_NlzQn1pABDyIxQFxf5WRGpFmf4e2q3pIb6rXmsfbdjiAO08rrVVy0P06v5LWM1Gc7esH7-V2LFOHJTBPyd-SDHCXp_Seddvn-Ou1waf4VoVYlZin3jFPbUy46_I51-xTxb4WtQgrXqEXvr3z72HqO6REBnKYRnlOWhjSC4UpbdGSiuJNlQAKEUE51o4hmJ5rCRzwT7XTErjKACnJOZWZzmlx2izmBf2BGESGwOagkOcAcm0tpxRT4dAJZZkrIOuG7jS90oKI21qxKZpQDf16KYVuh3U9ZCuh3od63DDeTetvZv-5d0O4o1D0poSVKHemZr8Nvvpf8x-hradSaiKtM_R5nKxshdoy3wsJ-XiMnxx34w13Fg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+algorithms+for+approximating+oscillatory+Bessel+integrals+with+Cauchy-type+singularities&rft.jtitle=Results+in+applied+mathematics&rft.au=Qinghua+Wu&rft.au=Mengjun+Sun&rft.date=2024-02-01&rft.pub=Elsevier&rft.eissn=2590-0374&rft.volume=21&rft.spage=100422&rft_id=info:doi/10.1016%2Fj.rinam.2023.100422&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aeca544b4e304e3899fc7b7823c329d8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0374&client=summon