New algorithms for approximating oscillatory Bessel integrals with Cauchy-type singularities

In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Results in applied mathematics Ročník 21; s. 100422
Hlavní autoři: Wu, Qinghua, Sun, Mengjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2024
Elsevier
Témata:
ISSN:2590-0374, 2590-0374
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present an efficient numerical algorithm for approximating integrals involving highly oscillatory Bessel functions with Cauchy-type singularities. By employing the technique of complex line integration, the highly oscillatory Bessel integrals are transformed into oscillatory integrals with a Fourier kernel. When the integration interval does not contain zeros, we use Cauchy’s theorem to transform the integration path to the complex plane and then use the Gaussian–Laguerre formula to compute the integral. For cases in which the integration interval contains zeros, we decompose the integral into two parts: the ordinary and the singular integral. We give a stable recursive formula based on Chebyshev polynomials and Bessel functions for ordinary integrals. For singular integrals, we utilize the MeijerG function for efficient computation. Numerical examples verify the effectiveness of the new algorithm and the fast convergence.
ISSN:2590-0374
2590-0374
DOI:10.1016/j.rinam.2023.100422