Flow Measurements Derived from Camera Footage Using an Open-Source Ecosystem

Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) Jg. 14; H. 3; S. 424
Hauptverfasser: Meier, Robert, Tscheikner-Gratl, Franz, Steffelbauer, David B., Makropoulos, Christos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2022
Schlagworte:
ISSN:2073-4441, 2073-4441
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and sewage reduces the hardware demands and need for maintenance. This paper utilizes off-the-shelf cameras and machine learning algorithms to estimate the discharge in open sewer channels. We use convolutional neural networks to extract the water level and surface velocity from camera images directly, without the need for artificial markers in the sewage stream. Under optimal conditions, our method estimates the water level with an accuracy of ±2.48% and the surface velocity with an accuracy of ±2.08% in a laboratory setting—a performance comparable to other state-of-the-art solutions (e.g., in situ measurements).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4441
2073-4441
DOI:10.3390/w14030424