Flow Measurements Derived from Camera Footage Using an Open-Source Ecosystem
Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and...
Uloženo v:
| Vydáno v: | Water (Basel) Ročník 14; číslo 3; s. 424 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.02.2022
|
| Témata: | |
| ISSN: | 2073-4441, 2073-4441 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and sewage reduces the hardware demands and need for maintenance. This paper utilizes off-the-shelf cameras and machine learning algorithms to estimate the discharge in open sewer channels. We use convolutional neural networks to extract the water level and surface velocity from camera images directly, without the need for artificial markers in the sewage stream. Under optimal conditions, our method estimates the water level with an accuracy of ±2.48% and the surface velocity with an accuracy of ±2.08% in a laboratory setting—a performance comparable to other state-of-the-art solutions (e.g., in situ measurements). |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2073-4441 2073-4441 |
| DOI: | 10.3390/w14030424 |