Flow Measurements Derived from Camera Footage Using an Open-Source Ecosystem

Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water (Basel) Ročník 14; číslo 3; s. 424
Hlavní autoři: Meier, Robert, Tscheikner-Gratl, Franz, Steffelbauer, David B., Makropoulos, Christos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.02.2022
Témata:
ISSN:2073-4441, 2073-4441
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sensors used for wastewater flow measurements need to be robust and are, consequently, expensive pieces of hardware that must be maintained regularly to function correctly in the hazardous environment of sewers. Remote sensing can remedy these issues, as the lack of direct contact between sensor and sewage reduces the hardware demands and need for maintenance. This paper utilizes off-the-shelf cameras and machine learning algorithms to estimate the discharge in open sewer channels. We use convolutional neural networks to extract the water level and surface velocity from camera images directly, without the need for artificial markers in the sewage stream. Under optimal conditions, our method estimates the water level with an accuracy of ±2.48% and the surface velocity with an accuracy of ±2.08% in a laboratory setting—a performance comparable to other state-of-the-art solutions (e.g., in situ measurements).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4441
2073-4441
DOI:10.3390/w14030424