Novel Data Augmentation Employing Multivariate Gaussian Distribution for Neural Network-Based Blood Pressure Estimation

In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 11; číslo 9; s. 3923
Hlavní autori: Song, Kwangsub, Park, Tae-Jun, Chang, Joon-Hyuk
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 2021
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between the features in a multi-dimensional feature vector to describe the correlated real-valued random variables successfully. To verify the proposed algorithm against the conventional algorithm, we compare the results in terms of mean error (ME) with standard deviation and Pearson correlation using 110 subjects contributed to the database (DB) which includes the systolic BP (SBP), diastolic BP (DBP), photoplethysmography (PPG) signal, and electrocardiography (ECG) signal. For each subject, 3 times (or 6 times) measurements are accomplished in which the PPG and ECG signals are recorded for 20 s. And, to compare with the performance of the BP estimation (BPE) using the data augmentation algorithms, we train the BPE model using the two-stage system, called the stacked NN. Since the proposed algorithm can express properly the correlation between the features than the conventional algorithm, the errors turn out lower compared to the conventional algorithm, which shows the superiority of our approach.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app11093923